File size: 6,996 Bytes
c3f29b3
 
b7bc425
 
 
 
 
 
 
 
c3f29b3
b7bc425
 
57b552a
 
 
 
 
 
 
 
 
 
 
 
b7bc425
 
 
 
 
 
 
 
 
 
 
 
 
c3f29b3
b7bc425
 
 
 
 
 
c3f29b3
b7bc425
 
 
c3f29b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7bc425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3f29b3
 
b7bc425
 
 
c3f29b3
 
 
 
 
 
 
 
b7bc425
 
 
c3f29b3
b7bc425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3f29b3
b7bc425
 
 
 
 
 
 
 
 
 
 
 
 
c3f29b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7bc425
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# grounding_dino2.py
# Lightweight Grounding DINO wrapper for box detection + cropping + visualization.
from __future__ import annotations

import os
import threading
from pathlib import Path
from typing import List, Dict, Any, Tuple, Optional

import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection

# ---- Writable caches (HF Spaces / containers) ----
CACHE_DIR = os.getenv("HF_CACHE_DIR", "/tmp/hf-cache")
Path(CACHE_DIR).mkdir(parents=True, exist_ok=True)
os.environ.setdefault("HOME", "/tmp")
os.environ.setdefault("XDG_CACHE_HOME", CACHE_DIR)
os.environ.setdefault("HF_HOME", CACHE_DIR)
os.environ.setdefault("HUGGINGFACE_HUB_CACHE", CACHE_DIR)
os.environ.setdefault("TRANSFORMERS_CACHE", CACHE_DIR)
os.environ.setdefault("HF_DATASETS_CACHE", f"{CACHE_DIR}/datasets")
os.environ.setdefault("TORCH_HOME", CACHE_DIR)
os.environ.setdefault("PYTHONPYCACHEPREFIX", "/tmp/pycache")


def _clamp_xyxy(box: List[float], w: int, h: int) -> Tuple[int, int, int, int]:
    x0, y0, x1, y1 = box
    x0 = max(0, min(int(round(x0)), w - 1))
    y0 = max(0, min(int(round(y0)), h - 1))
    x1 = max(0, min(int(round(x1)), w - 1))
    y1 = max(0, min(int(round(y1)), h - 1))
    if x1 < x0:
        x0, x1 = x1, x0
    if y1 < y0:
        y0, y1 = y1, y0
    return x0, y0, x1, y1


def _pad_box(box: Tuple[int, int, int, int], w: int, h: int, frac: float = 0.06) -> Tuple[int, int, int, int]:
    x0, y0, x1, y1 = box
    bw, bh = x1 - x0, y1 - y0
    dx, dy = int(bw * frac), int(bh * frac)
    return max(0, x0 - dx), max(0, y0 - dy), min(w - 1, x1 + dx), min(h - 1, y1 + dy)


def crop_from_box(img: Image.Image, box_xyxy: Tuple[int, int, int, int]) -> Image.Image:
    return img.crop(box_xyxy)


def _parse_to_flat_labels(labels: List[str] | str) -> List[str]:
    """
    Accepts a comma-separated string or a list of strings and returns a flat list of non-empty labels.
    """
    if isinstance(labels, str):
        items = [x.strip() for x in labels.split(",") if x.strip()]
    else:
        items = [str(x).strip() for x in labels if str(x).strip()]
    if not items:
        raise ValueError("No labels provided.")
    return items


def _build_dot_separated_prompt(items: List[str]) -> str:
    """
    Builds the recommended GroundingDINO text prompt: "a man . a dog ."
    """
    return " . ".join(items) + " ."


class GroundingDINORunner:
    """
    Minimal singleton-style wrapper for Grounding DINO zero-shot detector.
    """

    def __init__(self, model_id: Optional[str] = None, device: Optional[str] = None):
        self.model_id = model_id or os.getenv("GDINO_MODEL_ID", "IDEA-Research/grounding-dino-tiny")
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self._lock = threading.Lock()

        self.processor = AutoProcessor.from_pretrained(self.model_id, cache_dir=CACHE_DIR)
        self.model = AutoModelForZeroShotObjectDetection.from_pretrained(
            self.model_id, cache_dir=CACHE_DIR
        ).to(self.device)
        self.model.eval()

    def detect(
        self,
        image: Image.Image,
        labels: List[str] | str,
        box_threshold: float = 0.4,
        text_threshold: float = 0.3,
        pad_frac: float = 0.06,
    ) -> List[Dict[str, Any]]:
        """
        Runs zero-shot detection and returns:
          [{ 'label': str, 'score': float, 'box_xyxy': (x0,y0,x1,y1), 'crop': PIL.Image }, ...]
        """
        w, h = image.size

        # ---- FIX: use dot-separated string or flat list; avoid nested lists ----
        items = _parse_to_flat_labels(labels)
        text_prompt = _build_dot_separated_prompt(items)  # "a man . a dog ."

        # Prepare inputs
        inputs = self.processor(images=image, text=text_prompt, return_tensors="pt").to(self.device)

        # Inference
        with self._lock, torch.no_grad():
            outputs = self.model(**inputs)

            # transformers>=4.51 uses "threshold", older expects "box_threshold"
            try:
                post = self.processor.post_process_grounded_object_detection(
                    outputs=outputs,
                    input_ids=inputs.input_ids,
                    threshold=float(box_threshold),
                    text_threshold=float(text_threshold),
                    target_sizes=[(h, w)],
                )
            except TypeError:
                post = self.processor.post_process_grounded_object_detection(
                    outputs=outputs,
                    input_ids=inputs.input_ids,
                    box_threshold=float(box_threshold),
                    text_threshold=float(text_threshold),
                    target_sizes=[(h, w)],
                )

        det = post[0]
        boxes = det.get("boxes", [])
        scores = det.get("scores", [])
        # Newer transformers populate "text_labels"; else "labels"
        labels_out = det.get("text_labels", det.get("labels", []))

        results: List[Dict[str, Any]] = []
        for b, s, lab in zip(boxes, scores, labels_out):
            b = b.tolist() if hasattr(b, "tolist") else list(b)
            bx = _clamp_xyxy(b, w, h)
            bx = _pad_box(bx, w, h, pad_frac)
            crop = crop_from_box(image, bx)
            score = float(s.item()) if torch.is_tensor(s) else float(s)
            results.append({"label": lab, "score": score, "box_xyxy": bx, "crop": crop})

        return results


# --- Visualization helper ------------------------------------------------------
def visualize_detections(
    image: Image.Image,
    detections: list[dict],
    *,
    box_color: tuple[int, int, int] = (0, 255, 0),
    text_color: tuple[int, int, int] = (0, 0, 0),
    box_width: int = 3,
) -> Image.Image:
    """
    Draw boxes + labels on a copy of `image`.
    Each detection item expects: {'label': str, 'score': float, 'box_xyxy': (x0,y0,x1,y1)}
    """
    vis = image.copy()
    draw = ImageDraw.Draw(vis)
    try:
        font = ImageFont.truetype("DejaVuSans.ttf", 16)
    except Exception:
        font = None

    for det in detections:
        x0, y0, x1, y1 = det["box_xyxy"]
        lab = det.get("label", "")
        sc = det.get("score", 0.0)
        draw.rectangle((x0, y0, x1, y1), outline=box_color, width=box_width)
        text = f"{lab} {sc:.2f}"
        # textlength fallback
        try:
            text_w = draw.textlength(text, font=font)  # type: ignore[attr-defined]
        except Exception:
            text_w = len(text) * 8
        pad = 4
        draw.rectangle((x0, max(0, y0 - 20), x0 + int(text_w) + pad * 2, y0), fill=box_color)
        draw.text((x0 + pad, max(0, y0 - 18)), text, fill=text_color, font=font)
    return vis


# convenience singleton
_runner_singleton: GroundingDINORunner | None = None

def get_runner() -> GroundingDINORunner:
    global _runner_singleton
    if _runner_singleton is None:
        _runner_singleton = GroundingDINORunner()
    return _runner_singleton