Spaces:
Sleeping
Sleeping
File size: 10,906 Bytes
aff0481 8b95053 43e6aa2 aff0481 dc9ded5 44c07d6 dc9ded5 43e6aa2 b7bc425 43e6aa2 dc9ded5 a122b63 dc9ded5 a122b63 dc9ded5 8b95053 dc9ded5 8b95053 dc9ded5 029cf9d dc9ded5 43e6aa2 dc9ded5 8b95053 dc9ded5 8b95053 dc9ded5 8b95053 dc9ded5 8b95053 43e6aa2 8b95053 43e6aa2 dc9ded5 b7bc425 be6e716 b7bc425 dc9ded5 8b95053 dc9ded5 8b95053 43e6aa2 dc9ded5 8b95053 dc9ded5 8b95053 dc9ded5 8b95053 dc9ded5 8b95053 43e6aa2 dc9ded5 43e6aa2 8b95053 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# util.py (patched cache handling for HF Spaces)
import os
from pathlib import Path
# Put every cache under /tmp (always writable in Spaces)
CACHE_DIR = os.getenv("HF_CACHE_DIR", "/tmp/hf-cache")
Path(CACHE_DIR).mkdir(parents=True, exist_ok=True)
# Make sure libraries don't fall back to "~/.cache" -> "/.cache"
os.environ.setdefault("HF_HOME", CACHE_DIR)
os.environ.setdefault("TRANSFORMERS_CACHE", CACHE_DIR)
os.environ.setdefault("HUGGINGFACE_HUB_CACHE", CACHE_DIR)
os.environ.setdefault("XDG_CACHE_HOME", CACHE_DIR)
os.environ.setdefault("TORCH_HOME", CACHE_DIR)
# util.py (Spaces-safe + metrics)
from time import perf_counter
import threading
from io import BytesIO
from typing import List, Sequence, Tuple, Dict, Any
import io
import base64
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from transformers.image_utils import load_image as hf_load_image
from grounding_dino2 import get_runner as get_gdino_runner, visualize_detections
def _has_flash_attn() -> bool:
try:
import flash_attn # noqa: F401
return True
except Exception:
return False
def _pick_backend_and_dtype():
if not torch.cuda.is_available():
return "eager", torch.float32, "cpu"
major, _ = torch.cuda.get_device_capability()
dev = "cuda"
bf16_ok = torch.cuda.is_bf16_supported()
dtype = torch.bfloat16 if bf16_ok else torch.float16
if major >= 8: # Ampere+
attn = "flash_attention_2" if _has_flash_attn() else "eager"
else:
attn = "eager"
return attn, dtype, dev
class SmolVLMRunner:
"""Portable wrapper with per-call metrics."""
def __init__(self, model_id: str | None = None, device: str | None = None):
self.model_id = model_id or os.getenv("SMOLVLM_MODEL_ID", "HuggingFaceTB/SmolVLM-Instruct")
attn_impl, dtype, dev = _pick_backend_and_dtype()
attn_impl = os.getenv("SMOLVLM_ATTN", attn_impl) # optional override
self.device = device or dev
self.dtype = dtype
self.attn_impl = attn_impl
if self.device == "cuda" and self.attn_impl == "sdpa":
try:
from torch.backends.cuda import sdp_kernel
sdp_kernel(enable_flash=False, enable_mem_efficient=True, enable_math=True)
except Exception:
pass
self.processor = AutoProcessor.from_pretrained(self.model_id, cache_dir=CACHE_DIR)
self.model = AutoModelForVision2Seq.from_pretrained(
self.model_id,
torch_dtype=self.dtype,
_attn_implementation=self.attn_impl,
cache_dir=CACHE_DIR,
).to(self.device)
try:
self.model.config._attn_implementation = self.attn_impl
except Exception:
pass
self.model.eval()
self._lock = threading.Lock()
# ---------- Image utils ----------
@staticmethod
def _ensure_rgb(img: Image.Image) -> Image.Image:
return img.convert("RGB") if img.mode != "RGB" else img
@classmethod
def load_pil_from_urls(cls, urls: Sequence[str]) -> List[Image.Image]:
return [cls._ensure_rgb(hf_load_image(u)) for u in urls]
@classmethod
def load_pil_from_bytes(cls, blobs: Sequence[bytes]) -> List[Image.Image]:
return [cls._ensure_rgb(Image.open(BytesIO(b))) for b in blobs]
# ---------- Inference ----------
def detect_and_describe(
self,
image: Image.Image,
labels: list[str] | str,
*,
box_threshold: float = 0.4,
text_threshold: float = 0.3,
pad_frac: float = 0.06,
max_new_tokens: int = 160,
temperature: float | None = None,
top_p: float | None = None,
return_overlay: bool = False,
) -> list[dict] | dict:
"""
Uses Grounding DINO to detect boxes for `labels`, then asks SmolVLM to
describe each cropped box.
If return_overlay=False (default): returns a list of dicts:
[{ 'label','score','box_xyxy','description' }, ...]
If return_overlay=True: returns a dict:
{ 'detections': [...], 'overlay_png_b64': '<base64 PNG>' }
"""
gdino = get_gdino_runner()
detections = gdino.detect(
image=image,
labels=labels,
box_threshold=box_threshold,
text_threshold=text_threshold,
pad_frac=pad_frac,
)
if not detections:
return [] if not return_overlay else {"detections": [], "overlay_png_b64": None}
results: list[dict] = []
for det in detections:
crop = det["crop"]
prompt_txt = f"The image gets the label: '{det['label']}'. Describe the object inside this crop in detail."
content = [{"type": "image"}, {"type": "text", "text": prompt_txt}]
messages = [{"role": "user", "content": content}]
chat_prompt = self.processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = self.processor(text=chat_prompt, images=[crop], return_tensors="pt")
inputs = {k: (v.to(self.device) if hasattr(v, "to") else v) for k, v in inputs.items()}
gen_kwargs = dict(max_new_tokens=max_new_tokens)
if temperature is not None:
gen_kwargs["temperature"] = float(temperature)
if top_p is not None:
gen_kwargs["top_p"] = float(top_p)
with self._lock, torch.inference_mode():
out_ids = self.model.generate(**inputs, **gen_kwargs)
text = self.processor.batch_decode(out_ids, skip_special_tokens=True)[0].strip()
if text.startswith("Assistant:"):
text = text[len("Assistant:"):].strip()
results.append({
"label": det["label"],
"score": det["score"],
"box_xyxy": det["box_xyxy"],
"description": text,
})
if not return_overlay:
return results
# Build overlay image (PNG -> base64 string)
overlay = visualize_detections(image, detections)
buf = io.BytesIO()
overlay.save(buf, format="PNG")
b64 = base64.b64encode(buf.getvalue()).decode("ascii")
return {"detections": results, "overlay_png_b64": b64}
def generate(
self,
prompt: str,
images: Sequence[Image.Image],
max_new_tokens: int = 300,
temperature: float | None = None,
top_p: float | None = None,
return_stats: bool = False,
) -> str | Tuple[str, Dict[str, Any]]:
"""
Returns str by default.
If return_stats=True, returns (text, metrics_dict).
"""
meta = {
"model_id": self.model_id,
"device": self.device,
"dtype": str(self.dtype).replace("torch.", ""),
"attn_backend": self.attn_impl,
"image_count": len(images),
"max_new_tokens": int(max_new_tokens),
"temperature": None if temperature is None else float(temperature),
"top_p": None if top_p is None else float(top_p),
}
t0 = perf_counter()
content = [{"type": "image"} for _ in images] + [{"type": "text", "text": prompt}]
messages = [{"role": "user", "content": content}]
chat_prompt = self.processor.apply_chat_template(messages, add_generation_prompt=True)
# Preprocess (tokenize + vision)
inputs = self.processor(text=chat_prompt, images=list(images), return_tensors="pt")
inputs = {k: (v.to(self.device) if hasattr(v, "to") else v) for k, v in inputs.items()}
t_pre_end = perf_counter()
# Inference (generate)
gen_kwargs = dict(max_new_tokens=max_new_tokens)
if temperature is not None:
gen_kwargs["temperature"] = float(temperature)
if top_p is not None:
gen_kwargs["top_p"] = float(top_p)
if self.device == "cuda":
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
with self._lock, torch.inference_mode():
t_inf_start = perf_counter()
out_ids = self.model.generate(**inputs, **gen_kwargs)
if self.device == "cuda":
torch.cuda.synchronize()
t_inf_end = perf_counter()
# Decode
text = self.processor.batch_decode(out_ids, skip_special_tokens=True)[0].strip()
if text.startswith("Assistant:"):
text = text[len("Assistant:"):].strip()
t_dec_end = perf_counter()
# Stats
input_tokens = int(inputs["input_ids"].shape[-1]) if "input_ids" in inputs else None
total_tokens = int(out_ids.shape[-1]) # includes prompt + generated
output_tokens = int(total_tokens - (input_tokens or 0)) if input_tokens is not None else None
pre_ms = (t_pre_end - t0) * 1000.0
infer_ms = (t_inf_end - t_inf_start) * 1000.0
decode_ms = (t_dec_end - t_inf_end) * 1000.0
total_ms = (t_dec_end - t0) * 1000.0
tps_infer = (output_tokens / ((t_inf_end - t_inf_start) + 1e-9)) if output_tokens else None
tps_total = (
(output_tokens / ((t_dec_end - t0) + 1e-9)) if output_tokens else None
)
gpu_mem_alloc_mb = gpu_mem_resv_mb = None
gpu_name = None
if self.device == "cuda":
try:
gpu_mem_alloc_mb = round(torch.cuda.max_memory_allocated() / (1024**2), 2)
gpu_mem_resv_mb = round(torch.cuda.max_memory_reserved() / (1024**2), 2)
gpu_name = torch.cuda.get_device_name(torch.cuda.current_device())
except Exception:
pass
metrics: Dict[str, Any] = {
**meta,
"gpu_name": gpu_name,
"timings_ms": {
"preprocess": round(pre_ms, 2),
"inference": round(infer_ms, 2),
"decode": round(decode_ms, 2),
"total": round(total_ms, 2),
},
"tokens": {
"input": input_tokens,
"output": output_tokens,
"total": total_tokens,
},
"throughput": {
"tokens_per_sec_inference": None if tps_infer is None else round(tps_infer, 2),
"tokens_per_sec_end_to_end": None if tps_total is None else round(tps_total, 2),
},
"gpu_memory_mb": {
"max_allocated": gpu_mem_alloc_mb,
"max_reserved": gpu_mem_resv_mb,
},
}
return (text, metrics) if return_stats else text
# Convenience singleton
_runner_singleton = None
def get_runner():
global _runner_singleton
if _runner_singleton is None:
_runner_singleton = SmolVLMRunner()
return _runner_singleton
|