|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from spar3d.models.transformers.attention import FeedForward
|
|
from spar3d.models.utils import BaseModule
|
|
|
|
|
|
class CrossAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
kv_dim=None,
|
|
num_heads=16,
|
|
qkv_bias=False,
|
|
attn_drop=0.0,
|
|
proj_drop=0.0,
|
|
):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = head_dim**-0.5
|
|
kv_dim = dim if not kv_dim else kv_dim
|
|
self.wq = nn.Linear(dim, dim, bias=qkv_bias)
|
|
self.wk = nn.Linear(kv_dim, dim, bias=qkv_bias)
|
|
self.wv = nn.Linear(kv_dim, dim, bias=qkv_bias)
|
|
self.attn_drop = attn_drop
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
def forward(self, x_q, x_kv):
|
|
B, N_q, C = x_q.shape
|
|
B, N_kv, _ = x_kv.shape
|
|
|
|
q = self.wq(x_q).reshape(B, N_q, self.num_heads, C // self.num_heads)
|
|
|
|
k = self.wk(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads)
|
|
v = self.wv(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads)
|
|
|
|
|
|
x = torch.nn.functional.scaled_dot_product_attention(
|
|
q.transpose(1, 2),
|
|
k.transpose(1, 2),
|
|
v.transpose(1, 2),
|
|
attn_mask=None,
|
|
dropout_p=self.attn_drop,
|
|
scale=self.scale,
|
|
).transpose(1, 2)
|
|
|
|
|
|
x = x.reshape(B, N_q, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
kv_dim: Optional[int] = None,
|
|
num_heads: int = 16,
|
|
qkv_bias: bool = False,
|
|
attn_drop: float = 0.0,
|
|
proj_drop: float = 0.0,
|
|
ff_drop: float = 0.0,
|
|
):
|
|
super().__init__()
|
|
self.norm1 = nn.LayerNorm(dim)
|
|
self.attn1 = CrossAttention(
|
|
dim,
|
|
kv_dim=dim,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
attn_drop=attn_drop,
|
|
proj_drop=proj_drop,
|
|
)
|
|
self.norm2 = nn.LayerNorm(dim)
|
|
self.attn2 = CrossAttention(
|
|
dim,
|
|
kv_dim=kv_dim,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
attn_drop=attn_drop,
|
|
proj_drop=proj_drop,
|
|
)
|
|
self.norm3 = nn.LayerNorm(dim)
|
|
self.ff = FeedForward(dim, dropout=ff_drop)
|
|
|
|
def forward(self, z, x):
|
|
z_norm = self.norm1(z)
|
|
z = z + self.attn1(z_norm, z_norm)
|
|
|
|
z_norm = self.norm2(z)
|
|
z = z + self.attn2(z_norm, x if x is not None else z_norm)
|
|
z_norm = self.norm3(z)
|
|
z = z + self.ff(z_norm)
|
|
return z
|
|
|
|
|
|
class SingleStreamTransformer(BaseModule):
|
|
@dataclass
|
|
class Config(BaseModule.Config):
|
|
num_attention_heads: int = 16
|
|
attention_head_dim: int = 88
|
|
in_channels: Optional[int] = None
|
|
out_channels: Optional[int] = None
|
|
num_layers: int = 16
|
|
dropout: float = 0.0
|
|
norm_num_groups: int = 32
|
|
cross_attention_dim: Optional[int] = None
|
|
attention_bias: bool = False
|
|
|
|
cfg: Config
|
|
|
|
def configure(self) -> None:
|
|
self.num_attention_heads = self.cfg.num_attention_heads
|
|
self.attention_head_dim = self.cfg.attention_head_dim
|
|
inner_dim = self.num_attention_heads * self.attention_head_dim
|
|
|
|
|
|
self.norm = torch.nn.GroupNorm(
|
|
num_groups=self.cfg.norm_num_groups,
|
|
num_channels=self.cfg.in_channels,
|
|
eps=1e-6,
|
|
affine=True,
|
|
)
|
|
self.proj_in = nn.Linear(self.cfg.in_channels, inner_dim)
|
|
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
BasicBlock(
|
|
inner_dim,
|
|
kv_dim=self.cfg.cross_attention_dim,
|
|
num_heads=self.num_attention_heads,
|
|
qkv_bias=self.cfg.attention_bias,
|
|
proj_drop=self.cfg.dropout,
|
|
ff_drop=self.cfg.dropout,
|
|
)
|
|
for d in range(self.cfg.num_layers)
|
|
]
|
|
)
|
|
|
|
|
|
self.proj_out = nn.Linear(inner_dim, self.cfg.in_channels)
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, **kwargs):
|
|
residual = hidden_states
|
|
hidden_states = self.norm(hidden_states)
|
|
hidden_states = hidden_states.permute(0, 2, 1)
|
|
hidden_states = self.proj_in(hidden_states)
|
|
for block in self.transformer_blocks:
|
|
hidden_states = block(hidden_states, encoder_hidden_states)
|
|
hidden_states = self.proj_out(hidden_states).permute(0, 2, 1).contiguous()
|
|
|
|
hidden_states = hidden_states + residual
|
|
return hidden_states
|
|
|
|
|
|
class FuseBlock(nn.Module):
|
|
"""
|
|
Fuse X in to Z with cross attention
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim_z: int,
|
|
dim_x: int,
|
|
num_heads: int = 16,
|
|
qkv_bias: bool = False,
|
|
attn_drop: float = 0.0,
|
|
proj_drop: float = 0.0,
|
|
ff_drop: float = 0.0,
|
|
norm_x_input: bool = True,
|
|
):
|
|
super().__init__()
|
|
self.norm_x_input = norm_x_input
|
|
if self.norm_x_input:
|
|
self.norm_x = nn.LayerNorm(dim_x)
|
|
self.attn = CrossAttention(
|
|
dim_z,
|
|
kv_dim=dim_x,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
attn_drop=attn_drop,
|
|
proj_drop=proj_drop,
|
|
)
|
|
self.norm_z1 = nn.LayerNorm(dim_z)
|
|
self.norm_z2 = nn.LayerNorm(dim_z)
|
|
self.ff = FeedForward(dim_z, dropout=ff_drop)
|
|
|
|
def forward(self, z, x):
|
|
|
|
z = z + self.attn(self.norm_z1(z), self.norm_x(x) if self.norm_x_input else x)
|
|
z = z + self.ff(self.norm_z2(z))
|
|
return z
|
|
|
|
|
|
@torch.no_grad()
|
|
def get_triplane_attention_mask(res):
|
|
N = 3 * res * res
|
|
attn_mask = torch.zeros(3, res, res, 3, res, res)
|
|
|
|
i, j = torch.meshgrid(torch.arange(res), torch.arange(res))
|
|
|
|
attn_mask[0, i, j, 1, i, :] = 1.0
|
|
attn_mask[0, i, j, 2, j, :] = 1.0
|
|
attn_mask[1, i, j, 0, i, :] = 1.0
|
|
attn_mask[1, i, j, 2, :, j] = 1.0
|
|
attn_mask[2, i, j, 0, :, i] = 1.0
|
|
attn_mask[2, i, j, 1, :, j] = 1.0
|
|
attn_mask = attn_mask.bool()
|
|
|
|
attn_bias = torch.empty_like(attn_mask, dtype=torch.float)
|
|
attn_bias.masked_fill_(attn_mask, 0.0)
|
|
attn_bias.masked_fill_(~attn_mask, float("-inf"))
|
|
|
|
return attn_bias.reshape(N, N)
|
|
|
|
|
|
class TriplaneAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
resolution: int,
|
|
num_heads: int = 16,
|
|
qkv_bias: bool = False,
|
|
attn_drop: float = 0.0,
|
|
proj_drop: float = 0.0,
|
|
full_attention: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = head_dim**-0.5
|
|
self.wq = nn.Linear(dim, dim, bias=qkv_bias)
|
|
self.wk = nn.Linear(dim, dim, bias=qkv_bias)
|
|
self.wv = nn.Linear(dim, dim, bias=qkv_bias)
|
|
self.attn_drop = attn_drop
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
self.resolution = resolution
|
|
self.full_attention = full_attention
|
|
self.attn_mask = (
|
|
get_triplane_attention_mask(resolution) if not full_attention else None
|
|
)
|
|
|
|
def forward(self, x):
|
|
B, N, C = x.shape
|
|
|
|
q = self.wq(x).reshape(B, N, self.num_heads, C // self.num_heads)
|
|
k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads)
|
|
v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads)
|
|
|
|
|
|
assert N == self.resolution**2 * 3
|
|
attn_bias = (
|
|
self.attn_mask.to(q)
|
|
.unsqueeze(0)
|
|
.unsqueeze(0)
|
|
.expand(B, self.num_heads, -1, -1)
|
|
if not self.full_attention
|
|
else None
|
|
)
|
|
|
|
|
|
x = torch.nn.functional.scaled_dot_product_attention(
|
|
q.transpose(1, 2),
|
|
k.transpose(1, 2),
|
|
v.transpose(1, 2),
|
|
attn_mask=attn_bias,
|
|
dropout_p=self.attn_drop,
|
|
scale=self.scale,
|
|
).transpose(1, 2)
|
|
|
|
|
|
x = x.reshape(B, N, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
class TwoStreamBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim_latent: int,
|
|
dim_input: int,
|
|
num_basic_blocks: int = 4,
|
|
num_heads: int = 16,
|
|
qkv_bias: bool = False,
|
|
attn_drop: float = 0.0,
|
|
proj_drop: float = 0.0,
|
|
ff_drop: float = 0.0,
|
|
norm_x_input: bool = True,
|
|
dim_cross: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
|
|
self.fuse_block_in = FuseBlock(
|
|
dim_latent,
|
|
dim_input,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
attn_drop=attn_drop,
|
|
proj_drop=proj_drop,
|
|
ff_drop=ff_drop,
|
|
norm_x_input=norm_x_input,
|
|
)
|
|
|
|
|
|
self.transformer_block = nn.ModuleList(
|
|
[
|
|
BasicBlock(
|
|
dim_latent,
|
|
kv_dim=dim_cross,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
proj_drop=proj_drop,
|
|
ff_drop=ff_drop,
|
|
)
|
|
for _ in range(num_basic_blocks)
|
|
]
|
|
)
|
|
|
|
|
|
self.fuse_block_out = FuseBlock(
|
|
dim_input,
|
|
dim_latent,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
attn_drop=attn_drop,
|
|
proj_drop=proj_drop,
|
|
ff_drop=ff_drop,
|
|
norm_x_input=norm_x_input,
|
|
)
|
|
|
|
def forward(self, latent, input, cross_input):
|
|
latent = self.fuse_block_in(latent, input)
|
|
for block in self.transformer_block:
|
|
latent = block(latent, cross_input)
|
|
input = self.fuse_block_out(input, latent)
|
|
return latent, input
|
|
|
|
|
|
class TwoStreamInterleaveTransformer(BaseModule):
|
|
@dataclass
|
|
class Config(BaseModule.Config):
|
|
num_attention_heads: int = 16
|
|
attention_head_dim: int = 64
|
|
raw_triplane_channels: int = 1024
|
|
triplane_channels: int = 1024
|
|
raw_image_channels: int = 1024
|
|
num_latents: int = 1792
|
|
num_blocks: int = 4
|
|
num_basic_blocks: int = 3
|
|
dropout: float = 0.0
|
|
latent_init_std: float = 0.02
|
|
norm_num_groups: int = 32
|
|
attention_bias: bool = False
|
|
norm_x_input: bool = False
|
|
cross_attention_dim: int = 1024
|
|
mix_latent: bool = True
|
|
|
|
cfg: Config
|
|
|
|
def configure(self) -> None:
|
|
self.mix_latent = self.cfg.mix_latent
|
|
|
|
|
|
self.num_attention_heads = self.cfg.num_attention_heads
|
|
self.attention_head_dim = self.cfg.attention_head_dim
|
|
self.num_latents = self.cfg.num_latents
|
|
self.latent_dim = self.num_attention_heads * self.attention_head_dim
|
|
|
|
|
|
if self.cfg.norm_num_groups > 0:
|
|
self.norm_triplane = torch.nn.GroupNorm(
|
|
num_groups=self.cfg.norm_num_groups,
|
|
num_channels=self.cfg.raw_triplane_channels,
|
|
eps=1e-6,
|
|
affine=True,
|
|
)
|
|
else:
|
|
self.norm_triplane = nn.LayerNorm(self.cfg.raw_triplane_channels)
|
|
self.proj_triplane = nn.Linear(
|
|
self.cfg.raw_triplane_channels, self.cfg.triplane_channels
|
|
)
|
|
if self.mix_latent:
|
|
self.norm_image = nn.LayerNorm(self.cfg.raw_image_channels)
|
|
self.proj_image = nn.Linear(self.cfg.raw_image_channels, self.latent_dim)
|
|
self.norm_latent = nn.LayerNorm(self.latent_dim)
|
|
self.proj_latent = nn.Linear(self.latent_dim, self.latent_dim)
|
|
|
|
|
|
self.latent_init = nn.Parameter(
|
|
torch.zeros(1, self.num_latents, self.latent_dim)
|
|
)
|
|
nn.init.normal_(self.latent_init, std=self.cfg.latent_init_std)
|
|
|
|
|
|
self.main_blocks = nn.ModuleList(
|
|
[
|
|
TwoStreamBlock(
|
|
self.latent_dim,
|
|
self.cfg.triplane_channels,
|
|
num_basic_blocks=self.cfg.num_basic_blocks,
|
|
num_heads=self.num_attention_heads,
|
|
qkv_bias=self.cfg.attention_bias,
|
|
proj_drop=self.cfg.dropout,
|
|
ff_drop=self.cfg.dropout,
|
|
norm_x_input=self.cfg.norm_x_input,
|
|
dim_cross=self.cfg.cross_attention_dim,
|
|
)
|
|
for _ in range(self.cfg.num_blocks)
|
|
]
|
|
)
|
|
|
|
|
|
self.proj_out = nn.Linear(
|
|
self.cfg.triplane_channels, self.cfg.raw_triplane_channels
|
|
)
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states, **kwargs):
|
|
|
|
|
|
if isinstance(self.norm_triplane, nn.GroupNorm):
|
|
triplane_tokens = self.norm_triplane(hidden_states)
|
|
triplane_tokens = triplane_tokens.permute(
|
|
0, 2, 1
|
|
)
|
|
elif isinstance(self.norm_triplane, nn.LayerNorm):
|
|
triplane_tokens = self.norm_triplane(hidden_states.permute(0, 2, 1))
|
|
else:
|
|
raise ValueError("Unknown normalization layer")
|
|
triplane_tokens = self.proj_triplane(triplane_tokens)
|
|
if self.mix_latent:
|
|
image_tokens = self.norm_image(
|
|
encoder_hidden_states
|
|
)
|
|
image_tokens = self.proj_image(image_tokens)
|
|
init_latents = self.latent_init.expand(
|
|
hidden_states.shape[0], -1, -1
|
|
)
|
|
init_latents = self.norm_latent(init_latents)
|
|
init_latents = self.proj_latent(init_latents)
|
|
if self.mix_latent:
|
|
latent_tokens = torch.cat(
|
|
[image_tokens, init_latents], dim=1
|
|
)
|
|
else:
|
|
latent_tokens = init_latents
|
|
|
|
|
|
for block in self.main_blocks:
|
|
latent_tokens, triplane_tokens = block(
|
|
latent_tokens, triplane_tokens, encoder_hidden_states
|
|
)
|
|
|
|
|
|
triplane_tokens = self.proj_out(triplane_tokens).permute(0, 2, 1).contiguous()
|
|
triplane_tokens = triplane_tokens + hidden_states
|
|
return triplane_tokens
|
|
|