Spaces:
Sleeping
Sleeping
File size: 7,676 Bytes
234eac0 a2ea235 234eac0 a2ea235 234eac0 a2ea235 234eac0 a2ea235 234eac0 a2ea235 234eac0 0b1170c a2ea235 234eac0 a2ea235 234eac0 0b1170c 234eac0 0b1170c 1aaad7e 234eac0 0b1170c 234eac0 0b1170c 234eac0 a2ea235 234eac0 a2ea235 234eac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import numpy as np
from typing import List
from chainlit.types import AskFileResponse
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
from aimakerspace.openai_utils.prompts import (
UserRolePrompt,
SystemRolePrompt,
AssistantRolePrompt,
)
from aimakerspace.openai_utils.embedding import EmbeddingModel
from aimakerspace.vectordatabase import VectorDatabase
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
import chainlit as cl
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams, Distance
from chainlit.input_widget import Select
from qdrant_client.models import PointStruct
#Qdrant client
client = None
#System Chat Prompt
system_template = """\
Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
system_role_prompt = SystemRolePrompt(system_template)
#User Prompt for chat
user_prompt_template = """\
Context:
{context}
Question:
{question}
"""
user_role_prompt = UserRolePrompt(user_prompt_template)
#Categorization of VectorDatabase
system_template_db = """\
You are an expert in categorization. Given the last user response determine if he or she wants to use the Qdrant database. If yes return the output single word 'QDrant' without any other phrases. If no return the only the word 'AI Makerspace'.
"""
system_role_prompt_db = SystemRolePrompt(system_template_db)
user_prompt_template_db = "User Input:\n{user_input}"
user_role_prompt_db = UserRolePrompt(user_prompt_template)
class RetrievalAugmentedQAPipeline:
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
self.llm = llm
self.vector_db_retriever = vector_db_retriever
async def arun_pipeline(self, user_query: str):
context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
context_prompt = ""
for context in context_list:
context_prompt += context[0] + "\n"
formatted_system_prompt = system_role_prompt.create_message()
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
async def generate_response():
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
yield chunk
return {"response": generate_response(), "context": context_list}
class RetrievalAugmentedQAPipelineQdrant:
def __init__(self, llm: ChatOpenAI(), vector_db_retriever) -> None:
self.llm = llm
self.vector_db_retriever = vector_db_retriever
self.embedding_model = EmbeddingModel()
async def arun_pipeline(self, user_query: str):
query_vector = self.embedding_model.get_embedding(user_query)
context_list = self.vector_db_retriever.search(
collection_name="my_collection",
query_vector=query_vector,
limit=4
)
context_prompt = ""
for context in context_list:
context_prompt += context.payload['text'] + "\n"
formatted_system_prompt = system_role_prompt.create_message()
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
async def generate_response():
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
yield chunk
return {"response": generate_response(), "context": context_list}
text_splitter = CharacterTextSplitter()
def process_text_file(file: AskFileResponse):
import tempfile
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as temp_file:
temp_file_path = temp_file.name
with open(temp_file_path, "wb") as f:
f.write(file.content)
text_loader = TextFileLoader(temp_file_path)
documents = text_loader.load_documents()
texts = text_splitter.split_texts(documents)
return texts
def process_pdf_file(file: AskFileResponse):
import tempfile
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".pdf") as temp_file:
temp_file_path = temp_file.name
with open(temp_file_path, "wb") as f:
f.write(file.content)
text_loader = TextFileLoader(temp_file_path)
documents = text_loader.load_documents()
texts = text_splitter.split_texts(documents)
return texts
async def initialize_qdrant(text):
client = QdrantClient(":memory:")
if not client.collection_exists("my_collection"):
client.create_collection(
collection_name="my_collection",
vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)
embedding_model = EmbeddingModel()
embeddings = await embedding_model.async_get_embeddings(text)
i = 0
for text, embedding in zip(text, embeddings):
insert(text, np.array(embedding), i, client)
i+=1
return client
def insert(text, vector, idx, client):
point= PointStruct(
id=idx,
vector=vector.tolist(),
payload={"text": text}
)
client.upsert(
collection_name="my_collection",
points=[point]
)
def choose_db(llm, user_input):
formatted_system_prompt_db = system_role_prompt_db.create_message()
formatted_user_prompt_db = user_role_prompt_db.create_message(question=user_input)
return llm.run([formatted_system_prompt_db, formatted_user_prompt_db])
@cl.on_chat_start
async def on_chat_start():
global client
files = None
# Wait for the user to upload a file
while files == None :
files = await cl.AskFileMessage(
content="Please upload a Text or PDF file to begin!",
accept=["text/plain", "application/pdf"],
max_size_mb=2,
timeout=180,
).send()
file = files[0]
msg = cl.Message(
content=f"Processing `{file.name}`...", disable_human_feedback=True
)
await msg.send()
# load the file
if file.name.endswith('.pdf'):
texts = process_pdf_file(file)
else:
texts = process_text_file(file)
print(f"Processing {len(texts)} text chunks")
chat_openai = ChatOpenAI()
res = await cl.AskUserMessage(content="Do you want to use the QDrant vector database or AI Makerspace's?").send()
if res:
chosen_db = choose_db(chat_openai, res['content'])
await cl.Message(
content=f"You have chosen {chosen_db}. Please start asking questions!",
).send()
# Create a chain
retrieval_augmented_qa_pipeline = None
if chosen_db.lower() == 'qdrant':
client = await initialize_qdrant(texts)
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipelineQdrant(
vector_db_retriever=client,
llm=chat_openai
)
else:
vector_db = VectorDatabase()
vector_db = await vector_db.abuild_from_list(texts)
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
vector_db_retriever=vector_db,
llm=chat_openai
)
# Let the user know that the system is ready
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain")
msg = cl.Message(content="")
result = await chain.arun_pipeline(message.content)
async for stream_resp in result["response"]:
await msg.stream_token(stream_resp)
await msg.send() |