import os from qdrant_client import QdrantClient from langchain_qdrant import QdrantVectorStore from langchain_openai import OpenAIEmbeddings from dotenv import load_dotenv load_dotenv() embeddings = OpenAIEmbeddings(model="text-embedding-3-small") client = QdrantClient( api_key=os.environ["QDRANT_API_KEY"], url=os.environ["QDRANT_URI"] ) vector_store = QdrantVectorStore( client=client, collection_name=os.environ["QDRANT_COLLECTION"], embedding=embeddings, ) retriever = vector_store.as_retriever() if __name__ == '__main__': query = "What is the document about?" results = retriever.invoke(query) print(f'****query={query}, results=', results)