import spaces import gradio as gr from transformers import pipeline import torch # Initialize the pipeline pipe = pipeline( "text-generation", model="google/medgemma-27b-text-it", torch_dtype=torch.bfloat16, device="cuda", ) @spaces.GPU def generate_response(system_prompt, user_prompt): messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}, ] output = pipe(messages, max_new_tokens=2048) return output[0]["generated_text"][-1]["content"] # Create Gradio UI demo = gr.Interface( fn=generate_response, inputs=[ gr.Textbox(label="System Prompt", value="You are a helpful medical assistant."), gr.Textbox(label="User Prompt", placeholder="Enter your question here..."), ], outputs=gr.Textbox(label="Generated Response"), title="MedGemma Medical Assistant", description="Enter a system and user prompt to generate a medically-informed response." ) # Launch the app demo.launch()