|
import spaces |
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
model_name = "sarvamai/sarvam-translate" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32).to('cuda:0') |
|
|
|
@spaces.GPU(duration=120) |
|
def generate_response(tgt_lang, user_prompt): |
|
messages = [ |
|
{"role": "system", "content": f"Translate the following sentence into {tgt_lang}."}, |
|
{"role": "user", "content": user_prompt}, |
|
] |
|
|
|
|
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
) |
|
|
|
|
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=1024, |
|
do_sample=True, |
|
temperature=0.01, |
|
num_return_sequences=1 |
|
) |
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() |
|
return tokenizer.decode(output_ids, skip_special_tokens=True) |
|
|
|
|
|
demo = gr.Interface( |
|
fn=generate_response, |
|
inputs=[ |
|
gr.Radio(["Hindi", "Bengali", "Marathi", "Telugu", "Tamil", "Gujarati", "Urdu", "Kannada", "Odia", "Malayalam", "Punjabi", "Assamese", "Maithili", "Santali", "Kashmiri", "Nepali", "Sindhi", "Dogri", "Konkani", "Manipuri (Meitei)", "Bodo", "Sanskrit"], label="Target Language", value="Hindi"), |
|
gr.Textbox(label="Input Text", value="Be the change you wish to see in the world."), |
|
], |
|
outputs=gr.Textbox(label="Translation"), |
|
title="SARVAM - TRANSLATE", |
|
description="Now supporting 22 Indian languages and structured long-form text" |
|
) |
|
|
|
|
|
demo.launch() |