Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
-
from transformers import
|
4 |
import torch
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
11 |
|
12 |
@spaces.GPU
|
13 |
def generate_response(tgt_lang, user_prompt):
|
@@ -16,25 +18,8 @@ def generate_response(tgt_lang, user_prompt):
|
|
16 |
{"role": "user", "content": user_prompt},
|
17 |
]
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
messages,
|
22 |
-
tokenize=False,
|
23 |
-
)
|
24 |
-
|
25 |
-
# Tokenize and move input to model device
|
26 |
-
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
27 |
-
|
28 |
-
# Generate the output
|
29 |
-
generated_ids = model.generate(
|
30 |
-
**model_inputs,
|
31 |
-
max_new_tokens=1024,
|
32 |
-
do_sample=True,
|
33 |
-
temperature=0.01,
|
34 |
-
num_return_sequences=1
|
35 |
-
)
|
36 |
-
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
37 |
-
return tokenizer.decode(output_ids, skip_special_tokens=True)
|
38 |
|
39 |
# Create Gradio UI
|
40 |
demo = gr.Interface(
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
import torch
|
5 |
|
6 |
+
# Initialize the pipeline
|
7 |
+
pipe = pipeline(
|
8 |
+
"text-generation",
|
9 |
+
model="sarvamai/sarvam-translate",
|
10 |
+
torch_dtype=torch.float32,
|
11 |
+
device="cuda:0",
|
12 |
+
)
|
13 |
|
14 |
@spaces.GPU
|
15 |
def generate_response(tgt_lang, user_prompt):
|
|
|
18 |
{"role": "user", "content": user_prompt},
|
19 |
]
|
20 |
|
21 |
+
output = pipe(messages, max_new_tokens=2048)
|
22 |
+
return output[0]["generated_text"][-1]["content"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Create Gradio UI
|
25 |
demo = gr.Interface(
|