Spaces:
Runtime error
Runtime error
File size: 8,806 Bytes
7ec1256 965e09e 7ec1256 965e09e 7ec1256 965e09e 7ec1256 965e09e 7ec1256 965e09e 7ec1256 965e09e 7ec1256 965e09e 7ec1256 965e09e 7ec1256 965e09e 7ec1256 965e09e 7ec1256 965e09e 7ec1256 965e09e 7ec1256 965e09e 7ec1256 965e09e 7ec1256 965e09e 7ec1256 965e09e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
from flask import Flask, render_template, request, send_from_directory, session
from PIL import Image
import os, torch, cv2, mediapipe as mp
from transformers import SamModel, SamProcessor, logging as hf_logging
from torchvision import transforms
from diffusers.utils import load_image
from flask_cors import CORS
import json
import time
app= Flask(__name__)
app.secret_key = os.environ.get('SECRET_KEY', 'dev-secret-key-change-in-production') # Change this to a random secret key
CORS(app)
# Enable Hugging Face detailed logs (shows model download progress)
hf_logging.set_verbosity_info()
UPLOAD_FOLDER = '/tmp/uploads'
OUTPUT_FOLDER = '/tmp/outputs'
if not os.path.exists(UPLOAD_FOLDER):
print(f"[WARN] {UPLOAD_FOLDER} does not exist. Creating...")
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
if not os.path.exists(OUTPUT_FOLDER):
print(f"[WARN] {OUTPUT_FOLDER} does not exist. Creating...")
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
# Global model variables
model, processor = None, None
device = None
def initialize_model():
"""Initialize model once at startup"""
global model, processor, device
# Determine device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[INFO] Using device: {device}")
print("[INFO] Loading SAM model and processor...")
model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-50", cache_dir="/app/.cache")
processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-50", cache_dir="/app/.cache")
# Move model to device
model = model.to(device)
print(f"[INFO] Model and processor loaded successfully on {device}!")
def load_model():
"""Ensure model is loaded (should already be loaded at startup)"""
global model, processor
if model is None or processor is None:
print("[WARNING] Model not loaded, initializing now...")
initialize_model()
def warmup_model():
"""Warm up the model with a dummy inference"""
global model, processor, device
if model is None or processor is None:
return
print("[INFO] Warming up model...")
try:
# Create a dummy image and points for warmup
dummy_img = Image.new('RGB', (512, 512), color='white')
dummy_points = [[[256, 256], [300, 300]]]
inputs = processor(dummy_img, input_points=dummy_points, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
_ = model(**inputs)
print("[INFO] Model warmup completed!")
except Exception as e:
print(f"[WARNING] Model warmup failed: {e}")
@app.before_request
def log_request_info():
print(f"[INFO] Incoming request: {request.method} {request.path}")
@app.route('/health')
def health():
return "OK", 200
# Route to serve outputs dynamically
@app.route('/outputs/<filename>')
def serve_output(filename):
return send_from_directory(OUTPUT_FOLDER, filename)
# Route to serve cached person images
@app.route('/uploads/<filename>')
def serve_upload(filename):
return send_from_directory(UPLOAD_FOLDER, filename)
def detect_pose_and_get_coordinates(person_path):
"""Extract pose coordinates from person image"""
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
image = cv2.imread(person_path)
if image is None:
raise Exception("No image detected.")
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = pose.process(image_rgb)
if not results.pose_landmarks:
raise Exception("No pose detected.")
height, width, _ = image.shape
landmarks = results.pose_landmarks.landmark
left_shoulder = (int(landmarks[11].x * width), int(landmarks[11].y * height))
right_shoulder = (int(landmarks[12].x * width), int(landmarks[12].y * height))
return left_shoulder, right_shoulder
@app.route('/', methods=['GET', 'POST'])
def index():
start_time = time.time()
print(f"[INFO] Handling {request.method} on /")
if request.method == 'POST':
try:
load_model()
# Check if we have a cached person image and coordinates
use_cached_person = 'person_coordinates' in session and 'person_image_path' in session
person_coordinates = None
person_path = None
if use_cached_person:
# Use cached person image and coordinates
person_path = session['person_image_path']
person_coordinates = session['person_coordinates']
print(f"[INFO] Using cached person image: {person_path}")
print(f"[INFO] Using cached coordinates: {person_coordinates}")
else:
# Process new person image
person_file = request.files.get('person_image')
if not person_file or person_file.filename == '':
return "No person image provided. Please upload a person image first."
person_path = os.path.join(UPLOAD_FOLDER, 'person.jpg')
person_file.save(person_path)
print(f"[INFO] Saved new person image to {person_path}")
# Detect pose and get coordinates
left_shoulder, right_shoulder = detect_pose_and_get_coordinates(person_path)
person_coordinates = {
'left_shoulder': left_shoulder,
'right_shoulder': right_shoulder
}
# Cache the person image and coordinates
session['person_image_path'] = person_path
session['person_coordinates'] = person_coordinates
print(f"[INFO] Cached person coordinates: {person_coordinates}")
# Process garment image
tshirt_file = request.files['tshirt_image']
tshirt_path = os.path.join(UPLOAD_FOLDER, 'tshirt.png')
tshirt_file.save(tshirt_path)
print(f"[INFO] Saved garment image to {tshirt_path}")
# SAM model inference using cached or new coordinates
img = load_image(person_path)
new_tshirt = load_image(tshirt_path)
input_points = [[[person_coordinates['left_shoulder'][0], person_coordinates['left_shoulder'][1]],
[person_coordinates['right_shoulder'][0], person_coordinates['right_shoulder'][1]]]]
inputs = processor(img, input_points=input_points, return_tensors="pt")
# Move inputs to device
inputs = {k: v.to(device) for k, v in inputs.items()}
# Run inference
with torch.no_grad(): # Disable gradient computation for inference
outputs = model(**inputs)
masks = processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)
mask_tensor = masks[0][0][2].to(dtype=torch.uint8)
mask = transforms.ToPILImage()(mask_tensor * 255)
# Combine images
new_tshirt = new_tshirt.resize(img.size, Image.LANCZOS)
img_with_new_tshirt = Image.composite(new_tshirt, img, mask)
result_path = os.path.join(OUTPUT_FOLDER, 'result.jpg')
img_with_new_tshirt.save(result_path)
print(f"[INFO] Result saved to {result_path}")
# Calculate processing time
processing_time = time.time() - start_time
print(f"[PERF] Total processing time: {processing_time:.2f}s")
# Serve via dynamic route with cached person info
return render_template('index.html',
result_img='/outputs/result.jpg',
cached_person=use_cached_person,
person_image_path=person_path,
processing_time=f"{processing_time:.2f}s")
except Exception as e:
print(f"[ERROR] {e}")
return f"Error: {e}"
return render_template('index.html')
@app.route('/change_person', methods=['POST'])
def change_person():
"""Clear cached person data to allow new person upload"""
session.pop('person_coordinates', None)
session.pop('person_image_path', None)
print("[INFO] Cleared cached person data")
return render_template('index.html')
if __name__ == '__main__':
# Initialize model at startup
print("[INFO] Initializing model...")
initialize_model()
# Warm up the model
warmup_model()
print("[INFO] Starting Flask server...")
app.run(debug=True, host='0.0.0.0')
|