File size: 12,889 Bytes
d721dd6
965e09e
 
 
 
 
 
7ec1256
 
965e09e
 
7ec1256
965e09e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ec1256
965e09e
7ec1256
 
dc9bbcb
abbd19b
7ec1256
 
abbd19b
 
7ec1256
 
 
abbd19b
 
 
 
 
dc9bbcb
7ec1256
abbd19b
 
965e09e
dc9bbcb
 
 
 
 
 
 
 
 
 
 
 
7ec1256
dc9bbcb
 
 
 
 
 
 
 
7ec1256
dc9bbcb
965e09e
 
 
 
 
 
 
 
 
 
 
 
dc9bbcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
965e09e
7ec1256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
965e09e
 
7ec1256
965e09e
 
 
 
7ec1256
 
 
d93d849
7ec1256
 
99ac3d3
7ec1256
 
 
 
 
 
 
 
99ac3d3
7ec1256
99ac3d3
 
 
 
 
 
 
 
 
 
7ec1256
99ac3d3
 
7ec1256
 
 
 
 
99ac3d3
7ec1256
 
 
 
d93d849
7ec1256
 
965e09e
 
 
7ec1256
 
 
965e09e
 
7ec1256
 
965e09e
7ec1256
 
 
 
 
 
 
 
965e09e
 
 
 
 
 
 
 
 
 
 
 
dc9bbcb
 
 
 
 
965e09e
 
dc9bbcb
 
 
 
 
 
 
965e09e
7ec1256
 
 
 
dc9bbcb
 
 
 
 
 
 
 
 
 
 
 
7ec1256
 
dc9bbcb
d93d849
7ec1256
 
965e09e
 
 
 
 
d93d849
 
 
 
 
 
 
965e09e
7ec1256
 
 
 
 
d721dd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ec1256
dc9bbcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ec1256
dc9bbcb
 
 
7ec1256
dc9bbcb
 
 
965e09e
dc9bbcb
965e09e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from flask import Flask, render_template, request, send_from_directory, session, redirect, url_for
from PIL import Image
import os, torch, cv2, mediapipe as mp
from transformers import SamModel, SamProcessor, logging as hf_logging
from torchvision import transforms
from diffusers.utils import load_image
from flask_cors import CORS 
import json
import time

app= Flask(__name__)
app.secret_key = os.environ.get('SECRET_KEY', 'dev-secret-key-change-in-production')  # Change this to a random secret key
CORS(app)

# Enable Hugging Face detailed logs (shows model download progress)
hf_logging.set_verbosity_info()


UPLOAD_FOLDER = '/tmp/uploads'
OUTPUT_FOLDER = '/tmp/outputs'

if not os.path.exists(UPLOAD_FOLDER):
    print(f"[WARN] {UPLOAD_FOLDER} does not exist. Creating...")
    os.makedirs(UPLOAD_FOLDER, exist_ok=True)

if not os.path.exists(OUTPUT_FOLDER):
    print(f"[WARN] {OUTPUT_FOLDER} does not exist. Creating...")
    os.makedirs(OUTPUT_FOLDER, exist_ok=True)


# Global model variables
model, processor = None, None
device = None

def load_model():
    """Load model on demand (CPU-only to avoid meta tensor/device issues on Spaces)."""
    global model, processor, device
    
    # Force CPU on Spaces to avoid meta tensor errors when moving devices
    device = "cpu"
    print(f"[INFO] Using device: {device}")
    
    print("[INFO] Loading SAM model and processor...")
    model = SamModel.from_pretrained(
        "Zigeng/SlimSAM-uniform-50",
        cache_dir="/tmp/.cache",
        torch_dtype=torch.float32,
    )
    processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-50", cache_dir="/tmp/.cache")
    
    # Do NOT move model with .to(); keep it on CPU to prevent meta tensor errors
    print("[INFO] Model and processor loaded successfully on CPU!")

def cleanup_temp_files():
    """Clean up temporary files to save storage"""
    try:
        import shutil
        if os.path.exists("/tmp/.cache"):
            shutil.rmtree("/tmp/.cache")
        print("[INFO] Cleaned up temporary cache files")
    except Exception as e:
        print(f"[WARNING] Could not clean up temp files: {e}")

def cleanup_old_outputs():
    """Clean up old output files to save storage"""
    try:
        if os.path.exists(OUTPUT_FOLDER):
            for file in os.listdir(OUTPUT_FOLDER):
                file_path = os.path.join(OUTPUT_FOLDER, file)
                if os.path.isfile(file_path):
                    # Remove files older than 1 hour
                    if time.time() - os.path.getctime(file_path) > 3600:
                        os.remove(file_path)
                        print(f"[INFO] Removed old output file: {file}")
    except Exception as e:
        print(f"[WARNING] Could not clean up old outputs: {e}")

@app.before_request
def log_request_info():
    print(f"[INFO] Incoming request: {request.method} {request.path}")

@app.route('/health')
def health():
    return "OK", 200

# Route to serve outputs dynamically
@app.route('/outputs/<filename>')
def serve_output(filename):
    print(f"[DEBUG] Serving file: {filename} from {OUTPUT_FOLDER}")
    if not os.path.exists(OUTPUT_FOLDER):
        print(f"[ERROR] Output folder does not exist: {OUTPUT_FOLDER}")
        return "Output folder not found", 404
    
    file_path = os.path.join(OUTPUT_FOLDER, filename)
    if not os.path.exists(file_path):
        print(f"[ERROR] File does not exist: {file_path}")
        return "File not found", 404
    
    print(f"[DEBUG] File exists, serving: {file_path}")
    
    # Set proper MIME type for images
    from flask import Response
    if filename.lower().endswith(('.jpg', '.jpeg')):
        mimetype = 'image/jpeg'
    elif filename.lower().endswith('.png'):
        mimetype = 'image/png'
    else:
        mimetype = 'application/octet-stream'
    
    return send_from_directory(OUTPUT_FOLDER, filename, mimetype=mimetype)

# Route to serve cached person images
@app.route('/uploads/<filename>')
def serve_upload(filename):
    return send_from_directory(UPLOAD_FOLDER, filename)

def detect_pose_and_get_coordinates(person_path):
    """Extract pose coordinates from person image"""
    mp_pose = mp.solutions.pose
    pose = mp_pose.Pose()
    image = cv2.imread(person_path)
    if image is None:
        raise Exception("No image detected.")
    
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    results = pose.process(image_rgb)
    if not results.pose_landmarks:
        raise Exception("No pose detected.")
    
    height, width, _ = image.shape
    landmarks = results.pose_landmarks.landmark
    left_shoulder = (int(landmarks[11].x * width), int(landmarks[11].y * height))
    right_shoulder = (int(landmarks[12].x * width), int(landmarks[12].y * height))
    
    return left_shoulder, right_shoulder

@app.route('/', methods=['GET', 'POST'])
def index():
    start_time = time.time()
    print(f"[INFO] Handling {request.method} on /")
    if request.method == 'POST':
        try:
            load_model()
            
            # Check if we have a cached person image and coordinates
            use_cached_person = 'person_coordinates' in session and 'person_image_path' in session
            cached_person_flag = use_cached_person
            person_coordinates = None
            person_path = None
            person_disk_path = os.path.join(UPLOAD_FOLDER, 'person.jpg')
            
            if use_cached_person:
                # Use cached person image and coordinates
                person_path = session['person_image_path']
                person_coordinates = session['person_coordinates']
                print(f"[INFO] Using cached person image: {person_path}")
                print(f"[INFO] Using cached coordinates: {person_coordinates}")
            else:
                # Process new person image, or reuse existing person on disk if session missing
                person_file = request.files.get('person_image')
                if person_file and person_file.filename != '':
                    # New person uploaded
                    person_path = person_disk_path
                    person_file.save(person_path)
                    print(f"[INFO] Saved new person image to {person_path}")
                elif os.path.exists(person_disk_path):
                    # No upload this time, but previous person still on disk
                    person_path = person_disk_path
                    print(f"[INFO] Reusing existing person image on disk: {person_path}")
                else:
                    return "No person image provided. Please upload a person image first."

                # Detect pose and get coordinates (regenerate if session missing)
                left_shoulder, right_shoulder = detect_pose_and_get_coordinates(person_path)
                person_coordinates = {
                    'left_shoulder': left_shoulder,
                    'right_shoulder': right_shoulder
                }

                # Cache the person image and coordinates
                session['person_image_path'] = person_path
                session['person_coordinates'] = person_coordinates
                print(f"[INFO] Cached person coordinates: {person_coordinates}")
                cached_person_flag = True

            # Process garment image
            tshirt_file = request.files['tshirt_image']
            tshirt_path = os.path.join(UPLOAD_FOLDER, 'tshirt.png')
            tshirt_file.save(tshirt_path)
            print(f"[INFO] Saved garment image to {tshirt_path}")

            # SAM model inference using cached or new coordinates
            img = load_image(person_path)
            new_tshirt = load_image(tshirt_path)
            input_points = [[[person_coordinates['left_shoulder'][0], person_coordinates['left_shoulder'][1]], 
                           [person_coordinates['right_shoulder'][0], person_coordinates['right_shoulder'][1]]]]
            inputs = processor(img, input_points=input_points, return_tensors="pt")
            
            # Move inputs to device
            inputs = {k: v.to(device) for k, v in inputs.items()}
            
            # Run inference
            with torch.no_grad():  # Disable gradient computation for inference
                outputs = model(**inputs)
            
            masks = processor.image_processor.post_process_masks(
                outputs.pred_masks.cpu(),
                inputs["original_sizes"].cpu(),
                inputs["reshaped_input_sizes"].cpu()
            )
            mask_tensor = masks[0][0][2].to(dtype=torch.uint8)
            mask = transforms.ToPILImage()(mask_tensor * 255)

            # Combine images
            new_tshirt = new_tshirt.resize(img.size, Image.LANCZOS)
            img_with_new_tshirt = Image.composite(new_tshirt, img, mask)
            result_path = os.path.join(OUTPUT_FOLDER, 'result.jpg')
            
            # Ensure output directory exists
            os.makedirs(OUTPUT_FOLDER, exist_ok=True)
            
            # Save the result image
            img_with_new_tshirt.save(result_path)
            print(f"[INFO] Result saved to {result_path}")
            
            # Verify file was saved
            if os.path.exists(result_path):
                file_size = os.path.getsize(result_path)
                print(f"[DEBUG] File saved successfully, size: {file_size} bytes")
            else:
                print(f"[ERROR] File was not saved to {result_path}")

            # Calculate processing time
            processing_time = time.time() - start_time
            print(f"[PERF] Total processing time: {processing_time:.2f}s")
            
            # Clean up old files to save storage
            cleanup_old_outputs()
            
            # Generate a unique filename to avoid caching issues
            import uuid
            unique_filename = f"result_{uuid.uuid4().hex[:8]}.jpg"
            unique_result_path = os.path.join(OUTPUT_FOLDER, unique_filename)
            
            # Copy the result to a unique filename
            import shutil
            shutil.copy2(result_path, unique_result_path)
            
            # Serve via dynamic route with cached person info
            return render_template('index.html', 
                                 result_img=f'/outputs/{unique_filename}',
                                 cached_person=cached_person_flag,
                                 person_image_path=person_path,
                                 processing_time=f"{processing_time:.2f}s")

        except Exception as e:
            print(f"[ERROR] {e}")
            return f"Error: {e}"

    # GET request: keep person image visible if available in session
    has_cached = 'person_coordinates' in session and 'person_image_path' in session
    return render_template(
        'index.html',
        cached_person=has_cached,
        person_image_path=session.get('person_image_path') if has_cached else None
    )

@app.route('/change_person', methods=['POST'])
def change_person():
    """Clear cached person data to allow new person upload"""
    session.pop('person_coordinates', None)
    session.pop('person_image_path', None)

    # Remove uploaded and output files to reset state
    try:
        person_disk_path = os.path.join(UPLOAD_FOLDER, 'person.jpg')
        tshirt_disk_path = os.path.join(UPLOAD_FOLDER, 'tshirt.png')
        if os.path.exists(person_disk_path):
            os.remove(person_disk_path)
        if os.path.exists(tshirt_disk_path):
            os.remove(tshirt_disk_path)
        if os.path.exists(OUTPUT_FOLDER):
            for file in os.listdir(OUTPUT_FOLDER):
                file_path = os.path.join(OUTPUT_FOLDER, file)
                if os.path.isfile(file_path):
                    os.remove(file_path)
        print("[INFO] Cleared cached person data and temp files")
    except Exception as e:
        print(f"[WARNING] Failed to clear files: {e}")

    # Redirect to GET / so the app reloads fresh
    return redirect(url_for('index'))

@app.route('/cleanup', methods=['POST'])
def cleanup():
    """Manual cleanup of temporary files"""
    cleanup_temp_files()
    cleanup_old_outputs()
    return "Cleanup completed", 200

@app.route('/test-image')
def test_image():
    """Test route to check if image serving works"""
    # Create a simple test image
    from PIL import Image, ImageDraw
    img = Image.new('RGB', (200, 200), color='red')
    draw = ImageDraw.Draw(img)
    draw.text((50, 100), "TEST IMAGE", fill='white')
    
    test_path = os.path.join(OUTPUT_FOLDER, 'test.jpg')
    os.makedirs(OUTPUT_FOLDER, exist_ok=True)
    img.save(test_path)
    
    return f'<img src="/outputs/test.jpg" alt="Test Image">'

if __name__ == '__main__':
    print("[INFO] Starting Flask server...")
    print("[INFO] Model will be loaded on first request to save memory...")
    app.run(debug=True, host='0.0.0.0')