Spaces:
Sleeping
Sleeping
File size: 16,456 Bytes
1f7fc9d 67e4482 1f7fc9d 00e21da 1f7fc9d a16134e 1f7fc9d 00e21da 1f7fc9d 00e21da 1f7fc9d 00e21da 1f7fc9d 67e4482 1f7fc9d 00e21da a16134e 00e21da 9c2487d 67e4482 9c2487d 67e4482 1f7fc9d ce84645 1f7fc9d 00e21da 1f7fc9d 67e4482 00e21da 1f7fc9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import huggingface_hub
#
# paths to various models
model_path_configs = {
"Humpback Whales": ("Intelligent-Instruments-Lab/rave-models", "humpbacks_pondbrain_b2048_r48000_z20.ts"),
"Magnets": ("Intelligent-Instruments-Lab/rave-models", "magnets_b2048_r48000_z8.ts"),
"Big Ensemble": ("Intelligent-Instruments-Lab/rave-models", "crozzoli_bigensemblesmusic_18d.ts"),
"Bird Dawn Chorus": ("Intelligent-Instruments-Lab/rave-models", "birds_dawnchorus_b2048_r48000_z8.ts"),
"Speaking & Singing": ("Intelligent-Instruments-Lab/rave-models", "voice-multi-b2048-r48000-z11.ts"),
"Resonator Piano": ("Intelligent-Instruments-Lab/rave-models", "mrp_strengjavera_b2048_r44100_z16.ts"),
"Multimbral Guitar": ("Intelligent-Instruments-Lab/rave-models", "guitar_iil_b2048_r48000_z16.ts"),
"Organ Archive": ("Intelligent-Instruments-Lab/rave-models", "organ_archive_b2048_r48000_z16.ts"),
"Water": ("Intelligent-Instruments-Lab/rave-models", "water_pondbrain_b2048_r48000_z16.ts"),
"Brass Sax": ("shuoyang-zheng/jaspers-rave-models", "aam_brass_sax_b2048_r44100_z8_noncausal.ts"),
"Speech": ("shuoyang-zheng/jaspers-rave-models", "librispeech100_b2048_r44100_z8_noncausal.ts"),
"String": ("shuoyang-zheng/jaspers-rave-models" ,"aam_string_b2048_r44100_z16_noncausal.ts"),
"Singer": ("shuoyang-zheng/jaspers-rave-models","gtsinger_b2048_r44100_z16_noncausal.ts"),
"Bass": ("shuoyang-zheng/jaspers-rave-models","aam_bass_b2048_r44100_z16_noncausal.ts"),
"Drum": ("shuoyang-zheng/jaspers-rave-models","aam_drum_b2048_r44100_z16_noncausal.ts"),
"Gtr Picking": ("shuoyang-zheng/jaspers-rave-models","guitar_picking_dm_b2048_r44100_z8_causal.ts"),
}
available_audio_files=[
"SilverCaneAbbey-Voices.wav",
"Chimes.wav",
"FrenchChildren.wav",
"Organ-ND.wav",
"SpigotsOfChateauLEtoge.wav",
"GesturesPercStrings.wav",
"SingingBowl-OmniMic.wav",
"BirdCalls.mp3",
]
model_path_config_keys = sorted(model_path_configs)
model_paths_cache = {}
def GetModelPath(model_path_name):
model_path = ()
if model_path_name in model_paths_cache.keys():
model_path = model_paths_cache[model_path_name]
else:
repo_id, filename = model_path_configs[model_path_name]
model_path = huggingface_hub.hf_hub_download(
repo_id =repo_id,
filename = filename,
cache_dir="../huggingface_hub_cache",
force_download=False,
)
print(f"Generated Model Path for {filename}.")
model_paths_cache[model_path_name] = model_path
return model_path
def saveAudio(file_path, audio):
with open(file_path + '.wav', 'wb') as f:
f.write(audio.data)
import torch
import pandas as pd
import copy
import librosa
import ast
import os
def AverageRaveModels(rave_a, rave_b, bias = 0):
r1_ratio = .5
r2_ratio = .5
messages = {}
# bias between -1 and 1
if abs(bias) <= 1:
if bias > 0:
r1_ratio = .5 + bias/2
r2_ratio = 1.0 - r1_ratio
rave_temp = rave_a
elif bias < 0:
r2_ratio = .5 + abs(bias)/2
r1_ratio = 1.0 - r2_ratio
else:
print(f"Unable to apply bias {bias} - bias must be between -1 and 1.")
# Get state dictionaries of both models
rave_a_params = rave_a.state_dict()
rave_b_params = rave_b.state_dict()
# intialize the averaged rave with model_a
rave_avg = copy.deepcopy(rave_a)
avg = rave_avg.state_dict()
# for reporting
keys_averaged={}
keys_not_averaged={}
for key in rave_a_params:
if key in rave_b_params:
try:
avg[key] = ((rave_a_params[key] * r1_ratio) + (rave_b_params[key] * r2_ratio))
keys_averaged[key]=(key, rave_a_params[key].shape, rave_b_params[key].shape, "")
except Exception as e:
print(f"Error averaging key {key}: {e}")
keys_not_averaged[key]=(key, rave_a_params[key].shape, rave_b_params[key].shape, e)
else:
print(f"Key {key} not found in rave_b parameters, skipping.")
# keys_not_averaged(key)
keys_not_averaged[key]=(key, rave_a_params[key].shape, "n/a", "Key not found in rave_b parameters.")
messages["keys_averaged"] = keys_averaged
messages["keys_not_averaged"] = keys_not_averaged
messages["stats"] = f'Numb Params Averaged: {len(keys_averaged)}\nNumb Params Unable to Average: {len(keys_not_averaged)}\nPercent Averaged: {len(keys_averaged) * 100/(len(keys_not_averaged) + len(keys_averaged)):5.2f}%'
# Commit the changes
rave_avg.load_state_dict(avg)
return rave_avg, messages
def ProcessRequest(model_name_a, model_name_b, audio_file_name, audio_file, sr_multiple=1, bias=0, function="AverageModels"):
if function == "AverageModels":
return GenerateRaveEncDecAudio(model_name_a, model_name_b, audio_file_name, audio_file, sr_multiple, bias)
elif function == "StyleTransfer":
print("Style Transfer not implemented yet.")
return None
def GenerateStyleTransfer(model_name_a, model_name_b, audio_file_name, audio_file, sr_multiple=1):
model_path_a = GetModelPath(model_name_a)
model_path_b = GetModelPath(model_name_b)
# Choose Audio File to encode/decode
if audio_file is None:
audio_file = os.path.join('assets', audio_file_name)
# print("Audio File Name:", audio_file_name)
# Generate Audio Files
# Audio files are created in the assets folder
generate_audio_files = False
rave_a = torch.jit.load(model_path_a)
rave_b = torch.jit.load(model_path_b)
# Let's load a sample audio file
y, sr = librosa.load(audio_file)
sr_multiplied = sr * sr_multiple # Adjust sample rate if needed
print(f"Audio File Loaded: {audio_file}, sample_rate = {sr}")
# Convert audio to a PyTorch tensor and reshape it to the
# required shape: (batch_size, n_channels, n_samples)
audio = torch.from_numpy(y).float()
audio = audio.reshape(1, 1, -1)
messages={}
audio_outputs={}
# perform style transfer
with torch.no_grad():
# encode the audio with the new averaged models
try:
latent = rave_a.encode(audio)
# decode individual and averaged models
decoded = rave_a.decode(latent)
style_transfer_decoded = rave_b.decode(latent)
audio_outputs['decoded'] = decoded
audio_outputs['style_transfer'] = style_transfer_decoded
except Exception as e:
print(f'Encoding process generated error: ', e)
model_a_file=model_path_a.rsplit("/")[-1]
model_b_file=model_path_b.rsplit("/")[-1]
# Original Audio
original_audio = (sr, y)
# Decoded Audio
print("Encoded and Decoded using original models")
decoded_audio = (sr, decoded.detach().numpy().squeeze())
style_transfer_audio = (sr, style_transfer_decoded.detach().numpy().squeeze())
# saveAudio('assets/' + model_a_file[: 7] + '_enc-dec.wav', a)
# saveAudio('assets/' model_a_file[: 7] + '-' model_b_file[: 7] + '_style_transfer.wav', a)
messages["stats"] = f"Model A: {model_name_a}\nModel B: {model_name_b}\nAudio file: {os.path.basename(audio_file)}\nSample Rate Multiple for Style Transfer Version: {sr_multiple}\n\n" + messages["stats"]
return original_audio, decoded_audio, style_transfer_audio, '', messages["stats"], '', ''
def GenerateRaveEncDecAudio(model_name_a, model_name_b, audio_file_name, audio_file, sr_multiple=1, bias=0):
###############################################
# Choose models from filenames dictionary created in previous cell
# Note: model_path_a is always used to initialize the averaged model.
# Switching them gets different results if the parameters are not all matched.
###############################################
# Examples - this matches only 21 params, but it sounds like maybe sosme of both are in the result.
model_path_a = GetModelPath(model_name_a)
model_path_b = GetModelPath(model_name_b)
#####################################
# Set biases between -1 and 1 to bias the result towards one of the models
# 0 = no bias; >0 biased towards model_a; <0 = biased towards model_b
#####################################
# Note: multiple biases not implemented for gradio version
biases=[bias]
####################################
# Choose Audio File to encode/decode
#####################################
# audio_file_name = "RJM1240-Gestures.wav"
if audio_file is None:
audio_file = os.path.join('assets', audio_file_name)
# print("Audio File Name:", audio_file_name)
####################################
# Generate Audio Files
# Audio files are created in the assets folder
generate_audio_files = False
rave_a = torch.jit.load(model_path_a)
rave_b = torch.jit.load(model_path_b)
# Let's load a sample audio file
y, sr = librosa.load(audio_file)
sr_multiplied = sr * sr_multiple # Adjust sample rate if needed
print(f"Audio File Loaded: {audio_file}, sample_rate = {sr}")
# Convert audio to a PyTorch tensor and reshape it to the
# required shape: (batch_size, n_channels, n_samples)
audio = torch.from_numpy(y).float()
audio = audio.reshape(1, 1, -1)
messages={}
audio_outputs={}
for bias in biases:
# Average the rave models
# rave_avg, numb_params_mod, numb_params_unable_to_mod = AverageRaveModels(rave_a, rave_b, bias=bias)
rave_avg, new_msgs = AverageRaveModels(rave_a, rave_b, (-1 * bias))
messages |= new_msgs
# no decode the results back to audio
with torch.no_grad():
# encode the audio with the new averaged models
try:
latent_a = rave_a.encode(audio)
latent_b = rave_b.encode(audio)
latent_avg = rave_avg.encode(audio)
# decode individual and averaged models
decoded_a = rave_a.decode(latent_a)
decoded_b = rave_b.decode(latent_b)
decoded_avg = rave_avg.decode(latent_avg)
audio_outputs[bias] = decoded_avg[0]
except:
print(f'Bias {bias} generated an error. Removing it from list of biases.')
biases.remove(bias)
# print(biases)
model_a_file=model_path_a.rsplit("/")[-1]
model_b_file=model_path_b.rsplit("/")[-1]
# Original Audio
original_audio = (sr, y)
# Decoded Audio
print("Encoded and Decoded using original models")
model_a_audio = (sr, decoded_a[0].detach().numpy().squeeze())
# saveAudio('assets/' + model_a_file[: 7] + '_only.wav', a)
model_b_audio = (sr, decoded_b[0].detach().numpy().squeeze())
# # saveAudio('assets/' + model_b_file[: 7] + '_only.wav', a)
print("Encoded and Decoded using Averaged Models")
print("with Biases: ", biases)
print("\nNumber of params able to average:", len(messages["keys_averaged"]))
print("Number of params unable to average:", len(messages["keys_not_averaged"]))
output_file_prefix = f'assets/{model_a_file[: 7]}-{model_b_file[: 7]}_'
bias = biases[0]
averaged_audio = (sr_multiplied, audio_outputs[bias].detach().numpy().squeeze())
df_averaged = pd.DataFrame(messages['keys_averaged']).transpose() #reset_index(names='Param Key')
df_averaged.columns=['Param Name', 'Model A Shape', 'Model B Shape', 'Notes']
df_not_averaged = pd.DataFrame(messages["keys_not_averaged"]).transpose()
# case when all params are averaged
if len(df_not_averaged.columns) == 0:
data = {'Param Name': [], 'Modeal A Shape': [], 'Model B Shape': [], 'Notes': []}
df_not_averaged = pd.DataFrame(data)
df_not_averaged.columns=['Param Name', 'Model A Shape', 'Model B Shape', 'Notes']
messages["stats"] = f"Model A: {model_name_a}\nModel B: {model_name_b}\nAudio file: {os.path.basename(audio_file)}\nSample Rate Multiple for Averaged Version: {sr_multiple}\n\n" + messages["stats"]
return original_audio, model_a_audio, model_b_audio, averaged_audio, messages["stats"], df_averaged, df_not_averaged
import gradio as gr
column_widths=['35%', '20%', '20%', '25%']
waveform_options = gr.WaveformOptions(waveform_color="#01C6FF",
waveform_progress_color="#0066B4",
skip_length=2,)
description = "<p style='line-height: 1'>This app attempts to average two RAVE models and then encode and decode an audio file through the original and averaged models.</p>" \
"<ul style='padding-bottom: 0px; padding-top: 5px;'>Instructions:<li style='line-height: .8; padding-top: 5px; padding-bottom: 0px;'>Select the two models from the lists of pre-trained RAVE models.</li>" \
"<li style='padding-top: 0px; line-height: .8'>Select an audio file from the ones available in the dropdown, or upload an audio file of up to 60 seconds. Click 'Submit' at the bottom of the page.</li></ul>"\
"<p style='line-height: 1.2; padding-top: 0px; margin-top: 10px;'>Note that in most cases not all parameters can be averaged. They may not exist in both models or the two values may not have the same shape. The data sets in the output list which ones were and weren't averaged with their shapes and any notes. (You can copy them into a spreadsheet by clicking the icon at the top right corner of each.)</p>"
"<!-- <li>Select a sample rate multiple for the averaged model. When there is a useful result, it sometimes sounds better at double the sample rate.</li>" \
"<li>Select a bias towards one of the models. A bias of 0 will average the two models equally. A positive bias will favor Model A, and a negative bias will favor Model B.</li></ul>" \
"-->"
AverageModels = gr.Interface(title="Process Audio Through the Average of Two Rave Models", description=description,
fn=GenerateRaveEncDecAudio,
inputs=[
gr.Radio(model_path_config_keys, label="Select Model A", value="Multimbral Guitar", container=True),
gr.Radio(model_path_config_keys, label="Select Model B", value="Water", container=True),
gr.Dropdown(available_audio_files, label="Select from these audio files or upload your own below:", value="SingingBowl-OmniMic.wav",container=True),
gr.Audio(label="Upload an audio file (wav)", type="filepath", sources=["upload", "microphone"], max_length=60,
waveform_options=waveform_options, format='wav'),],
additional_inputs=[
gr.Radio([.2, .5, .75, 1, 2, 4], label="Sample Rate Multiple (Averaged version only)", value=1, container=True),
gr.Slider(label="Bias towards Model A or B", minimum=-1, maximum=1, value=0, step=0.1, container=True),
],
# if no way to pass dictionary, pass separate keys and values and zip them.
outputs=[
gr.Audio(label="Original Audio", sources=None, waveform_options=waveform_options, interactive=False),
gr.Audio(label="Encoded/Decoded through Model A", sources=None, waveform_options=waveform_options,),
gr.Audio(label="Encoded/Decoded through Model B", sources=None, waveform_options=waveform_options,),
gr.Audio(label="Encoded/Decoded through averaged model", sources=None, waveform_options=waveform_options,),
gr.Textbox(label="Info:"),
gr.Dataframe(label="Params Averaged", show_copy_button="True", scale=100, column_widths=column_widths, headers=['Param Name', 'Model A Shape', 'Model B Shape', 'Notes']),
gr.Dataframe(label="Params Not Averaged", show_copy_button="True", scale=100, column_widths=column_widths, headers=['Param Name', 'Model A Shape', 'Model B Shape', 'Notes'])
]
,fill_width=True
)
AverageModels.launch(max_file_size=10 * gr.FileSize.MB, share=True) |