Spaces:
Runtime error
Runtime error
File size: 1,168 Bytes
4d943c5 2082f77 4d943c5 e545d7a 4d943c5 e545d7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import streamlit as st
import tensorflow as tf
from transformers import TFGPT2LMHeadModel, GPT2Tokenizer
import pandas as pd
import numpy as np
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = TFGPT2LMHeadModel.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id)
def func(sentence, max_length, temperature):
input_ids = tokenizer.encode(sentence, return_tensors='tf')
output_list = model.generate(
input_ids,
do_sample=True,
max_length=max_length,
temperature=temperature,
top_p=0.92,
top_k=0,
num_return_sequences=5
)
output_strs = [tokenizer.decode(output, skip_special_tokens=True) for output in output_list]
return output_strs
sentence = st.text_input(label="Sentence to complete")
max_length = st.slider(label="Max Length", min_value=5, max_value=25, value=10, step=1)
temperature = st.slider(label="Temperature", min_value=0.1, max_value=10.0, value=0.1)
if st.button('Click to generate possible completions'):
outputs_strs = func(sentence, max_length, temperature)
i = 1
for output in outputs_strs:
st.write(f"{i}: {output}")
i += 1 |