#!/usr/bin/env python import os import re import tempfile from collections.abc import Iterator from threading import Thread import cv2 import gradio as gr import spaces import torch from loguru import logger from PIL import Image from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer # ────────────────────────────────────────────────────────────────────────────── # MODEL # ────────────────────────────────────────────────────────────────────────────── model_id = os.getenv("MODEL_ID", "rmdhirr/gemma-dpo-model-170") processor = AutoProcessor.from_pretrained(model_id, padding_side="left") model = Gemma3ForConditionalGeneration.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager" ) model.eval() MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) # ────────────────────────────────────────────────────────────────────────────── # HELPERS # ────────────────────────────────────────────────────────────────────────────── def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: image_count = 0 video_count = 0 for path in paths: if path.endswith(".mp4"): video_count += 1 else: image_count += 1 return image_count, video_count def count_files_in_history(history: list[dict]) -> tuple[int, int]: image_count = 0 video_count = 0 for item in history: if item["role"] != "user" or isinstance(item["content"], str): continue if item["content"][0].endswith(".mp4"): video_count += 1 else: image_count += 1 return image_count, video_count def validate_media_constraints(message: dict, history: list[dict]) -> bool: new_image_count, new_video_count = count_files_in_new_message(message["files"]) history_image_count, history_video_count = count_files_in_history(history) image_count = history_image_count + new_image_count video_count = history_video_count + new_video_count if video_count > 1: gr.Warning("Only one video is supported.") return False if video_count == 1: if image_count > 0: gr.Warning("Mixing images and videos is not allowed.") return False if "" in message["text"]: gr.Warning("Using tags with video files is not supported.") return False if video_count == 0 and image_count > MAX_NUM_IMAGES: gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.") return False if "" in message["text"] and message["text"].count("") != new_image_count: gr.Warning("The number of tags in the text does not match the number of images.") return False return True def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: vidcap = cv2.VideoCapture(video_path) fps = vidcap.get(cv2.CAP_PROP_FPS) total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) frame_interval = max(total_frames // MAX_NUM_IMAGES, 1) frames: list[tuple[Image.Image, float]] = [] for i in range(0, min(total_frames, MAX_NUM_IMAGES * frame_interval), frame_interval): if len(frames) >= MAX_NUM_IMAGES: break vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) success, image = vidcap.read() if success: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(image) timestamp = round(i / fps, 2) if fps else 0.0 frames.append((pil_image, timestamp)) vidcap.release() return frames def process_video(video_path: str) -> list[dict]: content = [] frames = downsample_video(video_path) for pil_image, timestamp in frames: with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: pil_image.save(temp_file.name) content.append({"type": "text", "text": f"Frame {timestamp}:"}) content.append({"type": "image", "url": temp_file.name}) logger.debug(f"{content=}") return content def process_interleaved_images(message: dict) -> list[dict]: logger.debug(f"{message['files']=}") parts = re.split(r"()", message["text"]) logger.debug(f"{parts=}") content = [] image_index = 0 for part in parts: if part == "": content.append({"type": "image", "url": message["files"][image_index]}) logger.debug(f"file: {message['files'][image_index]}") image_index += 1 elif isinstance(part, str) and part.strip(): content.append({"type": "text", "text": part.strip()}) elif isinstance(part, str) and part != "": content.append({"type": "text", "text": part}) logger.debug(f"{content=}") return content def process_new_user_message(message: dict) -> list[dict]: if not message["files"]: return [{"type": "text", "text": message["text"]}] if message["files"][0].endswith(".mp4"): return [{"type": "text", "text": message["text"]}, *process_video(message["files"][0])] if "" in message["text"]: return process_interleaved_images(message) return [{"type": "text", "text": message["text"]}, *[{"type": "image", "url": p} for p in message["files"]]] def process_history(history: list[dict]) -> list[dict]: messages = [] current_user_content: list[dict] = [] for item in history: if item["role"] == "assistant": if current_user_content: messages.append({"role": "user", "content": current_user_content}) current_user_content = [] messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) else: content = item["content"] if isinstance(content, str): current_user_content.append({"type": "text", "text": content}) else: current_user_content.append({"type": "image", "url": content[0]}) return messages # ────────────────────────────────────────────────────────────────────────────── # GENERATION # ────────────────────────────────────────────────────────────────────────────── @spaces.GPU(duration=120) def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]: if not validate_media_constraints(message, history): yield "" return messages = [] if system_prompt: messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) messages.extend(process_history(history)) messages.append({"role": "user", "content": process_new_user_message(message)}) inputs = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ).to(device=model.device, dtype=torch.bfloat16) # TextIteratorStreamer wants a tokenizer-like object tokenizer_for_stream = getattr(processor, "tokenizer", processor) streamer = TextIteratorStreamer( tokenizer_for_stream, timeout=30.0, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = dict( inputs, streamer=streamer, max_new_tokens=max_new_tokens, disable_compile=True, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() output = "" for delta in streamer: output += delta yield output # ────────────────────────────────────────────────────────────────────────────── # EXAMPLES + DESCRIPTION # ────────────────────────────────────────────────────────────────────────────── examples = [ [{"text": "I need to be in Japan for 10 days, going to Tokyo, Kyoto and Osaka. Think about number of attractions in each of them and allocate number of days to each city. Make public transport recommendations.", "files": []}], [{"text": "Write the matplotlib code to generate the same bar chart.", "files": ["assets/additional-examples/barchart.png"]}], [{"text": "What is odd about this video?", "files": ["assets/additional-examples/tmp.mp4"]}], [{"text": "I already have this supplement and I want to buy this one . Any warnings I should know about?", "files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"]}], [{"text": "Write a poem inspired by the visual elements of the images.", "files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"]}], [{"text": "Compose a short musical piece inspired by the visual elements of the images.", "files": ["assets/sample-images/07-1.png", "assets/sample-images/07-2.png", "assets/sample-images/07-3.png", "assets/sample-images/07-4.png"]}], [{"text": "Write a short story about what might have happened in this house.", "files": ["assets/sample-images/08.png"]}], [{"text": "Create a short story based on the sequence of images.", "files": ["assets/sample-images/09-1.png", "assets/sample-images/09-2.png", "assets/sample-images/09-3.png", "assets/sample-images/09-4.png", "assets/sample-images/09-5.png"]}], [{"text": "Describe the creatures that would live in this world.", "files": ["assets/sample-images/10.png"]}], [{"text": "Read text in the image.", "files": ["assets/additional-examples/1.png"]}], [{"text": "When is this ticket dated and how much did it cost?", "files": ["assets/additional-examples/2.png"]}], [{"text": "Read the text in the image into markdown.", "files": ["assets/additional-examples/3.png"]}], [{"text": "Evaluate this integral.", "files": ["assets/additional-examples/4.png"]}], [{"text": "caption this image", "files": ["assets/sample-images/01.png"]}], [{"text": "What's the sign says?", "files": ["assets/sample-images/02.png"]}], [{"text": "Compare and contrast the two images.", "files": ["assets/sample-images/03.png"]}], [{"text": "List all the objects in the image and their colors.", "files": ["assets/sample-images/04.png"]}], [{"text": "Describe the atmosphere of the scene.", "files": ["assets/sample-images/05.png"]}], ] DESCRIPTION = """\ This is a demo of Gemma 3 12B IT, a vision language model with outstanding performance on a wide range of tasks. You can upload images, interleaved images and videos. Note that video input only supports single-turn conversation and mp4 input. """ # ────────────────────────────────────────────────────────────────────────────── # UI (keeps your ChatInterface layout + adds tiny per-bubble copy icon) # Using Blocks so we can inject JS; we mimic your layout (title/description/inputs). # ────────────────────────────────────────────────────────────────────────────── with gr.Blocks( css=""" /* Make message container allow a tiny button outside the bubble edge */ #chat-root [data-testid*="message"], #chat-root .message { position: relative; overflow: visible; } /* Tiny circular copy icon, bottom-right, slightly outside so it doesn't cover text */ .bubble-copy{ position:absolute; bottom:-0.35rem; /* sit just outside the bubble */ right:-0.35rem; width:22px; height:22px; display:flex; align-items:center; justify-content:center; border-radius:9999px; border:1px solid rgba(0,0,0,.15); background:rgba(255,255,255,.96); box-shadow:0 1px 2px rgba(0,0,0,.10); font-size:12px; line-height:1; padding:0; cursor:pointer; opacity:.85; } .bubble-copy:hover{ opacity:1; } /* Optional: tighten spacing a bit on additional inputs */ #extra-controls .wrap { gap: .5rem; } """ ) as demo: # We render title/description on top to avoid footer behavior, matching your layout. gr.Markdown("# Gemma 3 12B IT") gr.Markdown(DESCRIPTION) chat = gr.ChatInterface( fn=run, type="messages", chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"], elem_id="chat-root"), textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple", autofocus=True), multimodal=True, additional_inputs=[ gr.Textbox(label="System Prompt", value="You are a helpful assistant.", elem_id="sys-prompt"), gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700, elem_id="max-toks"), ], stop_btn=False, # Avoid ChatInterface.title to prevent footer placement; we show header above instead. # title="Gemma 3 12B IT", # description=DESCRIPTION, examples=examples, run_examples_on_click=False, cache_examples=False, css_paths="style.css", delete_cache=(1800, 1800), ) # Inject a small bottom-right copy icon into every assistant bubble demo.load( fn=None, inputs=None, outputs=None, js=r""" () => { const root = document.querySelector('#chat-root'); if (!root) return; // Minimal HTML → Markdown converter that preserves code fences. const toMarkdown = (node) => { if (node.nodeType === Node.TEXT_NODE) return node.nodeValue.replace(/\s+/g,' '); if (node.nodeType !== Node.ELEMENT_NODE) return ''; const tag = node.tagName?.toLowerCase?.() || ''; const kids = () => Array.from(node.childNodes).map(toMarkdown).join(''); switch (tag) { case 'strong': case 'b': return '**' + kids().trim() + '**'; case 'em': case 'i': return '*' + kids().trim() + '*'; case 'code': if (node.parentElement && node.parentElement.tagName.toLowerCase()==='pre') return kids(); return '`' + kids().trim() + '`'; case 'pre': { const code = node.querySelector('code'); const content = code ? code.textContent : node.textContent; return '\n```\n' + (content || '').replace(/\n+$/,'') + '\n```\n'; } case 'br': return ' \n'; case 'p': return kids().trim() + '\n\n'; case 'ul': { let out=''; node.querySelectorAll(':scope>li').forEach(li=>{ const m = toMarkdown(li).trim(); out += (m.startsWith('- ')?m:'- '+m)+'\n'; }); return out+'\n'; } case 'ol': { let out='',i=1; node.querySelectorAll(':scope>li').forEach(li=>{ out += (i++)+'. '+toMarkdown(li).trim()+'\n'; }); return out+'\n'; } case 'li': { let parts=''; Array.from(node.childNodes).forEach(ch=>{ const md = toMarkdown(ch); parts += md; if (ch.tagName && /ul|ol/i.test(ch.tagName)) parts += '\n'; }); return parts.trim(); } case 'a': { const href=node.getAttribute('href')||''; const text=kids().trim()||href; return `[${text}](${href})`; } case 'img': { const alt=node.getAttribute('alt')||''; const src=node.getAttribute('src')||''; return `![${alt}](${src})`; } case 'blockquote': return '> '+kids().trim().replace(/\n/g,'\n> ')+'\n\n'; case 'hr': return '\n---\n'; case 'h1': return '# '+kids().trim()+'\n\n'; case 'h2': return '## '+kids().trim()+'\n\n'; case 'h3': return '### '+kids().trim()+'\n\n'; case 'h4': return '#### '+kids().trim()+'\n\n'; case 'h5': return '##### '+kids().trim()+'\n\n'; case 'h6': return '###### '+kids().trim()+'\n\n'; default: return kids(); } }; const addCopyButtons = () => { const bots = root.querySelectorAll( '[data-testid="chatbot-message-bot"], [data-testid="bot"], .message.bot, .wrap.bot' ); bots.forEach(msg => { if (msg.querySelector('.bubble-copy')) return; if (getComputedStyle(msg).position === 'static') msg.style.position = 'relative'; const btn = document.createElement('button'); btn.className = 'bubble-copy'; btn.title = 'Copy as Markdown'; btn.setAttribute('aria-label', 'Copy message'); btn.textContent = '📋'; // tiny icon btn.addEventListener('click', (e) => { e.stopPropagation(); const container = document.createElement('div'); container.innerHTML = msg.innerHTML; let markdown = Array.from(container.childNodes).map(toMarkdown).join('') .replace(/[ \t]+\n/g,'\n') .replace(/\n{3,}/g,'\n\n') .trim(); const items = {}; const html = msg.innerHTML; if (html && window.Blob) items['text/html'] = new Blob([html], {type:'text/html'}); items['text/plain'] = new Blob([markdown], {type:'text/plain'}); if (navigator.clipboard && window.ClipboardItem) { navigator.clipboard.write([new ClipboardItem(items)]).catch(()=>{}); } else if (navigator.clipboard && navigator.clipboard.writeText) { navigator.clipboard.writeText(markdown).catch(()=>{}); } else { const ta=document.createElement('textarea'); ta.value=markdown; ta.style.position='fixed'; ta.style.opacity='0'; document.body.appendChild(ta); ta.select(); try{ document.execCommand('copy'); }catch(e){} document.body.removeChild(ta); } }); msg.appendChild(btn); }); }; addCopyButtons(); const obs = new MutationObserver(() => addCopyButtons()); obs.observe(root, { childList: true, subtree: true }); } """ ) # ────────────────────────────────────────────────────────────────────────────── # LAUNCH # ────────────────────────────────────────────────────────────────────────────── if __name__ == "__main__": demo.launch()