Spaces:
Running
Running
File size: 7,526 Bytes
9346f1c 4103566 9346f1c 4596a70 8b1f7a0 01ea22b b98f07f 54eae7e 3b3db42 3d8dbe8 3b3db42 bbd72ab 3b3db42 b98f07f 2a73469 10f9b3c 30dede7 fabb601 4103566 fabb601 08ba1fc fabb601 08ba1fc fabb601 1b8a36b a885f09 4103566 2a73469 ffefe11 818f024 614ee1f 4103566 f127f6a 25c6939 f127f6a 9f4fde3 f127f6a 25c6939 9f4fde3 4103566 25c6939 4103566 9f4fde3 4103566 beaaa9e f6475aa 01233b7 58733e4 d4ccaf3 10f9b3c 8daa060 65af9f4 4103566 7e8ac0e 65af9f4 d4ccaf3 e7226cc 65af9f4 21ce100 e7226cc 21ce100 d4ccaf3 21ce100 b98f07f 21ce100 16a06c4 21ce100 b98f07f 21ce100 16a06c4 21ce100 b98f07f 21ce100 16a06c4 21ce100 c6f7010 fefe31a e7226cc d4ccaf3 fefe31a 7a7f4b5 25c6939 fefe31a 7a7f4b5 bbd72ab fccd458 17f029a 8daa060 fefe31a d4ccaf3 7a7f4b5 17f029a d4ccaf3 8daa060 f7d1b51 71f25ab f7d1b51 818f024 f7d1b51 10f9b3c 511c060 10f9b3c c438de2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
fields,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
# Create empty DataFrame with proper columns for display
empty_df = pd.DataFrame(columns=[c.name for c in fields(AutoEvalColumn)])
return Leaderboard(
value=empty_df,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=["Model"],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
# Build filter columns - simplified since we removed most metadata columns
filter_columns = []
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=["Model"],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=filter_columns,
bool_checkboxgroup_label="Hide models",
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# ✉️✨ Soumettez votre modèle ici !", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Nom du modèle")
revision_name_textbox = gr.Textbox(label="Révision commit", placeholder="main")
precision = gr.Dropdown(
choices=["float16", "bfloat16"],
label="Précision",
multiselect=False,
value="float16",
interactive=True,
)
model_type = gr.Dropdown(
choices=["🔤 Encoder (BERT-like)", "🔽 Decoder (GPT-like)", "🔄 Encoder-Decoder (T5-like)"],
label="Type d'architecture",
multiselect=False,
value="🔤 Encoder (BERT-like)",
interactive=True,
)
submit_button = gr.Button("Soumettre l'évaluation")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
revision_name_textbox,
precision,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |