File size: 7,526 Bytes
9346f1c
4103566
9346f1c
4596a70
8b1f7a0
 
01ea22b
b98f07f
 
 
 
 
 
 
54eae7e
3b3db42
 
 
 
 
 
 
3d8dbe8
3b3db42
bbd72ab
3b3db42
 
b98f07f
2a73469
10f9b3c
30dede7
fabb601
4103566
fabb601
 
 
08ba1fc
fabb601
 
 
 
 
 
08ba1fc
fabb601
 
 
1b8a36b
a885f09
4103566
2a73469
ffefe11
 
 
 
818f024
614ee1f
4103566
 
f127f6a
 
 
 
 
 
 
 
 
 
25c6939
f127f6a
9f4fde3
f127f6a
 
 
 
25c6939
9f4fde3
 
4103566
 
 
 
 
 
 
 
25c6939
4103566
9f4fde3
4103566
 
 
beaaa9e
f6475aa
01233b7
 
58733e4
d4ccaf3
10f9b3c
8daa060
65af9f4
4103566
7e8ac0e
65af9f4
d4ccaf3
e7226cc
65af9f4
21ce100
e7226cc
21ce100
d4ccaf3
21ce100
b98f07f
 
 
 
21ce100
 
 
 
 
16a06c4
21ce100
b98f07f
 
 
 
21ce100
 
 
 
 
16a06c4
21ce100
 
b98f07f
 
 
 
21ce100
 
 
 
 
16a06c4
21ce100
c6f7010
fefe31a
e7226cc
d4ccaf3
 
fefe31a
 
7a7f4b5
25c6939
fefe31a
7a7f4b5
bbd72ab
fccd458
 
17f029a
 
 
 
 
 
 
8daa060
fefe31a
d4ccaf3
 
 
 
 
 
7a7f4b5
17f029a
d4ccaf3
 
8daa060
 
f7d1b51
 
 
 
 
71f25ab
f7d1b51
818f024
 
f7d1b51
10f9b3c
511c060
10f9b3c
c438de2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    fields,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        # Create empty DataFrame with proper columns for display
        empty_df = pd.DataFrame(columns=[c.name for c in fields(AutoEvalColumn)])
        return Leaderboard(
            value=empty_df,
            datatype=[c.type for c in fields(AutoEvalColumn)],
            select_columns=SelectColumns(
                default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
                cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
                label="Select Columns to Display:",
            ),
            search_columns=["Model"],
            hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
            filter_columns=[],
            bool_checkboxgroup_label="Hide models",
            interactive=False,
        )
    
    # Build filter columns - simplified since we removed most metadata columns
    filter_columns = []
    
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=["Model"],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=filter_columns,
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# ✉️✨ Soumettez votre modèle ici !", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Nom du modèle")
                    revision_name_textbox = gr.Textbox(label="Révision commit", placeholder="main")
                    precision = gr.Dropdown(
                        choices=["float16", "bfloat16"],
                        label="Précision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    model_type = gr.Dropdown(
                        choices=["🔤 Encoder (BERT-like)", "🔽 Decoder (GPT-like)", "🔄 Encoder-Decoder (T5-like)"],
                        label="Type d'architecture",
                        multiselect=False,
                        value="🔤 Encoder (BERT-like)",
                        interactive=True,
                    )

            submit_button = gr.Button("Soumettre l'évaluation")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    revision_name_textbox,
                    precision,
                    model_type,
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()