File size: 6,283 Bytes
3d8dbe8
8b1f7a0
 
3b3db42
 
01ea22b
29546b4
3d8dbe8
25c6939
 
 
 
 
 
 
 
 
3d8dbe8
91e8a06
8b1f7a0
 
 
 
 
 
 
 
 
 
 
29546b4
3d8dbe8
 
fefe31a
 
 
 
3d8dbe8
 
fefe31a
25c6939
3d8dbe8
 
 
8b1f7a0
29546b4
8b1f7a0
 
 
 
 
17f029a
8b1f7a0
 
29546b4
8b1f7a0
3d8dbe8
8b1f7a0
2a860f6
 
8b1f7a0
 
 
17f029a
 
 
 
8b1f7a0
 
 
 
 
17f029a
 
 
 
 
 
 
8b1f7a0
 
81722bf
 
17f029a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81722bf
 
3d8dbe8
 
 
 
 
 
 
 
fefe31a
3d8dbe8
 
 
 
 
 
8b1f7a0
 
 
 
 
 
 
ceb2102
8b1f7a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks

def fields(raw_class):
    if hasattr(raw_class, '__dataclass_fields__'):
        # For make_dataclass created classes
        if raw_class.__dataclass_fields__:
            return [field.type for field in raw_class.__dataclass_fields__.values()]
        else:
            # For regular @dataclass with empty __dataclass_fields__, check __dict__
            return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" and hasattr(v, 'name')]
    # Fallback for non-dataclass
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" and hasattr(v, 'name')]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False

## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(("model_type_symbol", ColumnContent("T", "str", True, never_hidden=True)))
auto_eval_column_dict.append(("model", ColumnContent("Model", "markdown", True, never_hidden=True)))
# Average score
auto_eval_column_dict.append(("average", ColumnContent("Average", "number", True)))
#Scores
for task in Tasks:
    auto_eval_column_dict.append((task.name, ColumnContent(task.value.col_name, "number", True)))
# Model information - simplified to only essential columns

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)

## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    precision = ColumnContent("precision", "str", True)
    model_type = ColumnContent("model_type", "str", True)
    status = ColumnContent("status", "str", True)

## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji


class ModelType(Enum):
    ENCODER = ModelDetails(name="encoder", symbol="πŸ”€")  # BERT-like
    DECODER = ModelDetails(name="decoder", symbol="πŸ”½")  # GPT-like  
    ENCODER_DECODER = ModelDetails(name="encoder-decoder", symbol="πŸ”„")  # T5-like
    Unknown = ModelDetails(name="unknown", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type_str):
        if "encoder-decoder" in type_str.lower() or "πŸ”„" in type_str:
            return ModelType.ENCODER_DECODER
        elif "encoder" in type_str.lower() or "πŸ”€" in type_str:
            return ModelType.ENCODER
        elif "decoder" in type_str.lower() or "πŸ”½" in type_str:
            return ModelType.DECODER
        return ModelType.Unknown

    @staticmethod
    def from_config(config):
        """Detect model architecture type from config"""
        if hasattr(config, 'model_type'):
            model_type = config.model_type.lower()
            
            # Encoder-decoder models
            if model_type in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot', 'bigbird_pegasus']:
                return ModelType.ENCODER_DECODER
            
            # Decoder-only models (GPT-like)
            elif model_type in ['gpt', 'gpt2', 'gpt_neo', 'gpt_neox', 'gptj', 'bloom', 'llama', 'mistral', 'qwen']:
                return ModelType.DECODER
            
            # Encoder-only models (BERT-like) 
            elif model_type in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert']:
                return ModelType.ENCODER
        
        # Fallback: detect from architecture class name
        if hasattr(config, 'architectures') and config.architectures:
            arch_name = config.architectures[0].lower()
            
            if any(name in arch_name for name in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot']):
                return ModelType.ENCODER_DECODER
            elif any(name in arch_name for name in ['gpt', 'bloom', 'llama', 'mistral', 'qwen']):
                return ModelType.DECODER  
            elif any(name in arch_name for name in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert']):
                return ModelType.ENCODER
        
        return ModelType.Unknown

    @staticmethod
    def from_architecture(architecture):
        """Detect model type from architecture string"""
        if not architecture or architecture == "?":
            return ModelType.Unknown
            
        arch_lower = architecture.lower()
        
        # Encoder-decoder patterns
        if any(pattern in arch_lower for pattern in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot']):
            return ModelType.ENCODER_DECODER
        
        # Decoder patterns (GPT-like)
        elif any(pattern in arch_lower for pattern in ['gpt', 'bloom', 'llama', 'mistral', 'qwen', 'causal']):
            return ModelType.DECODER
        
        # Encoder patterns (BERT-like)
        elif any(pattern in arch_lower for pattern in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert', 'formaskedlm', 'fortokenclassification', 'forsequenceclassification']):
            return ModelType.ENCODER
        
        return ModelType.Unknown

class WeightType(Enum):
    Original = ModelDetails("Original")

class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    Unknown = ModelDetails("?")

    @staticmethod
    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        return Precision.Unknown

# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]