from dataclasses import dataclass, make_dataclass from enum import Enum import pandas as pd from src.about import Tasks def fields(raw_class): if hasattr(raw_class, '__dataclass_fields__'): # For make_dataclass created classes if raw_class.__dataclass_fields__: return [field.type for field in raw_class.__dataclass_fields__.values()] else: # For regular @dataclass with empty __dataclass_fields__, check __dict__ return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" and hasattr(v, 'name')] # Fallback for non-dataclass return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" and hasattr(v, 'name')] # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False ## Leaderboard columns auto_eval_column_dict = [] # Init auto_eval_column_dict.append(("model_type_symbol", ColumnContent("T", "str", True, never_hidden=True))) auto_eval_column_dict.append(("model", ColumnContent("Model", "markdown", True, never_hidden=True))) # Average score auto_eval_column_dict.append(("average", ColumnContent("Average", "number", True))) #Scores for task in Tasks: auto_eval_column_dict.append((task.name, ColumnContent(task.value.col_name, "number", True))) # Model information - simplified to only essential columns # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) ## For the queue columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) revision = ColumnContent("revision", "str", True) precision = ColumnContent("precision", "str", True) model_type = ColumnContent("model_type", "str", True) status = ColumnContent("status", "str", True) ## All the model information that we might need @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji class ModelType(Enum): ENCODER = ModelDetails(name="encoder", symbol="🔤") # BERT-like DECODER = ModelDetails(name="decoder", symbol="🔽") # GPT-like ENCODER_DECODER = ModelDetails(name="encoder-decoder", symbol="🔄") # T5-like Unknown = ModelDetails(name="unknown", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type_str): if "encoder-decoder" in type_str.lower() or "🔄" in type_str: return ModelType.ENCODER_DECODER elif "encoder" in type_str.lower() or "🔤" in type_str: return ModelType.ENCODER elif "decoder" in type_str.lower() or "🔽" in type_str: return ModelType.DECODER return ModelType.Unknown @staticmethod def from_config(config): """Detect model architecture type from config""" if hasattr(config, 'model_type'): model_type = config.model_type.lower() # Encoder-decoder models if model_type in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot', 'bigbird_pegasus']: return ModelType.ENCODER_DECODER # Decoder-only models (GPT-like) elif model_type in ['gpt', 'gpt2', 'gpt_neo', 'gpt_neox', 'gptj', 'bloom', 'llama', 'mistral', 'qwen']: return ModelType.DECODER # Encoder-only models (BERT-like) elif model_type in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert']: return ModelType.ENCODER # Fallback: detect from architecture class name if hasattr(config, 'architectures') and config.architectures: arch_name = config.architectures[0].lower() if any(name in arch_name for name in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot']): return ModelType.ENCODER_DECODER elif any(name in arch_name for name in ['gpt', 'bloom', 'llama', 'mistral', 'qwen']): return ModelType.DECODER elif any(name in arch_name for name in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert']): return ModelType.ENCODER return ModelType.Unknown @staticmethod def from_architecture(architecture): """Detect model type from architecture string""" if not architecture or architecture == "?": return ModelType.Unknown arch_lower = architecture.lower() # Encoder-decoder patterns if any(pattern in arch_lower for pattern in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot']): return ModelType.ENCODER_DECODER # Decoder patterns (GPT-like) elif any(pattern in arch_lower for pattern in ['gpt', 'bloom', 'llama', 'mistral', 'qwen', 'causal']): return ModelType.DECODER # Encoder patterns (BERT-like) elif any(pattern in arch_lower for pattern in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert', 'formaskedlm', 'fortokenclassification', 'forsequenceclassification']): return ModelType.ENCODER return ModelType.Unknown class WeightType(Enum): Original = ModelDetails("Original") class Precision(Enum): float16 = ModelDetails("float16") bfloat16 = ModelDetails("bfloat16") Unknown = ModelDetails("?") @staticmethod def from_str(precision): if precision in ["torch.float16", "float16"]: return Precision.float16 if precision in ["torch.bfloat16", "bfloat16"]: return Precision.bfloat16 return Precision.Unknown # Column selection COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] BENCHMARK_COLS = [t.value.col_name for t in Tasks]