import json import os import pandas as pd from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, EvalQueueColumn from src.leaderboard.read_evals import get_raw_eval_results from src.about import Tasks def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" raw_data = get_raw_eval_results(results_path, requests_path) all_data_json = [v.to_dict() for v in raw_data] df = pd.DataFrame.from_records(all_data_json) # Handle empty DataFrame case if df.empty: # Create empty DataFrame with correct columns df = pd.DataFrame(columns=cols) return df # Sort by the first task (EMEA NER) since we don't have an average for NER tasks # If no results exist yet, just sort by model name first_task = list(Tasks)[0] # emea_ner task_col_name = first_task.value.col_name # Use the col_name directly if task_col_name in df.columns: df = df.sort_values(by=[task_col_name], ascending=False) else: # Fallback to sorting by model name if no task results yet df = df.sort_values(by=["Model"], ascending=True) # Only select columns that exist in the DataFrame available_cols = [col for col in cols if col in df.columns] df = df[available_cols].round(decimals=2) # filter out if any of the benchmarks have not been produced df = df[has_no_nan_values(df, benchmark_cols)] return df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) try: with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) except (json.JSONDecodeError, KeyError, IOError) as e: print(f"Error processing {file_path}: {e}") continue elif ".md" not in entry: # this is a folder sub_entries = [e for e in os.listdir(os.path.join(save_path, entry)) if os.path.isfile(os.path.join(save_path, entry, e)) and not e.startswith(".")] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) try: with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) except (json.JSONDecodeError, KeyError, IOError) as e: print(f"Error processing {file_path}: {e}") continue pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]