import gradio as gr def generate_image(prompt, image_size="Default", num_inference_steps=28, seed="random", guidance_scale=3.5, sync_mode=True, num_images=1): # Load the model (assuming it supports these parameters) model = gr.load("models/robiai/picasoe", provider="hf-inference") # Implement image generation logic here # Return the generated image pass with gr.Blocks(title="Picasoe") as demo: gr.Markdown("# Picasoe") gr.Markdown("Convert your ideas into jaw-dropping visuals.") with gr.Row(): with gr.Column(): # Input components prompt = gr.Textbox(label="Prompt", placeholder="Describe the image you want to generate...") image_size = gr.Dropdown( choices=["Default", "Square", "Square HD", "Portrait 3:4", "Portrait 9:16", "Landscape 4:3", "Landscape 16:9", "Custom"], label="Image Size", value="Default" ) num_inference_steps = gr.Slider(minimum=1, maximum=50, step=1, label="Num Inference Steps", value=28) seed = gr.Textbox(label="Seed", placeholder="random", value="random") guidance_scale = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, label="Guidance Scale (CFG)", value=3.5) sync_mode = gr.Checkbox(label="Sync Mode", value=True) num_images = gr.Slider(minimum=1, maximum=10, step=1, label="Number of Images", value=1) generate_btn = gr.Button("Generate Image") with gr.Column(): # Output component output_image = gr.Image(label="Generated Image") # Set up the click event for generating the image generate_btn.click( fn=generate_image, inputs=[prompt, image_size, num_inference_steps, seed, guidance_scale, sync_mode, num_images], outputs=output_image ) demo.launch()