Update app.py
Browse files
app.py
CHANGED
@@ -6,16 +6,14 @@ import time
|
|
6 |
|
7 |
# --- Configuration ---
|
8 |
MODEL_REPO_ID = "unsloth/DeepSeek-R1-0528-Qwen3-8B-GGUF"
|
9 |
-
# IMPORTANT: Verify this filename
|
10 |
-
|
11 |
-
LOCAL_MODEL_PATH = f"./{MODEL_FILENAME}" # Download to current directory
|
12 |
|
13 |
-
# LLM Llama Parameters
|
14 |
-
N_CTX = 2048
|
15 |
-
N_THREADS = None
|
16 |
-
|
17 |
-
|
18 |
-
VERBOSE_LLAMA = True # Enable verbose logging from llama.cpp
|
19 |
|
20 |
# Generation parameters
|
21 |
DEFAULT_MAX_NEW_TOKENS = 512
|
@@ -24,6 +22,10 @@ DEFAULT_TOP_P = 0.95
|
|
24 |
DEFAULT_TOP_K = 40
|
25 |
DEFAULT_REPEAT_PENALTY = 1.1
|
26 |
|
|
|
|
|
|
|
|
|
27 |
# --- Global variable for the model ---
|
28 |
llm = None
|
29 |
|
@@ -37,7 +39,7 @@ def download_model_if_needed():
|
|
37 |
repo_id=MODEL_REPO_ID,
|
38 |
filename=MODEL_FILENAME,
|
39 |
local_dir=".",
|
40 |
-
local_dir_use_symlinks=False,
|
41 |
resume_download=True
|
42 |
)
|
43 |
end_time = time.time()
|
@@ -45,18 +47,17 @@ def download_model_if_needed():
|
|
45 |
return True
|
46 |
except Exception as e:
|
47 |
print(f"Error downloading model: {e}")
|
48 |
-
print("Please ensure MODEL_FILENAME is correct and available in the repository.")
|
49 |
print(f"Attempted to download: {MODEL_REPO_ID}/{MODEL_FILENAME}")
|
50 |
return False
|
51 |
else:
|
52 |
print(f"Model file {MODEL_FILENAME} already exists.")
|
53 |
return True
|
54 |
-
return False
|
55 |
|
56 |
# --- Model Loading ---
|
57 |
def load_llm_model():
|
58 |
global llm
|
59 |
-
if llm is None:
|
60 |
if not os.path.exists(LOCAL_MODEL_PATH):
|
61 |
print("Model file not found. Cannot load.")
|
62 |
return False
|
@@ -69,52 +70,56 @@ def load_llm_model():
|
|
69 |
n_threads=N_THREADS,
|
70 |
n_gpu_layers=N_GPU_LAYERS,
|
71 |
verbose=VERBOSE_LLAMA,
|
72 |
-
# logits_all=True, # Set to True if you need logits for all tokens (consumes more VRAM/RAM)
|
73 |
)
|
74 |
end_time = time.time()
|
75 |
print(f"Model loaded successfully in {end_time - start_time:.2f} seconds.")
|
76 |
return True
|
77 |
except Exception as e:
|
78 |
print(f"Error loading Llama model: {e}")
|
79 |
-
print("
|
80 |
-
|
81 |
-
f"the model ({MODEL_FILENAME}, ~{os.path.getsize(LOCAL_MODEL_PATH)/(1024**3):.2f}GB) might be too large.")
|
82 |
-
print("Try reducing N_CTX or using a smaller model variant if available.")
|
83 |
-
llm = None # Ensure llm is None if loading failed
|
84 |
return False
|
85 |
else:
|
86 |
print("Model already loaded.")
|
87 |
return True
|
88 |
|
89 |
-
|
90 |
# --- Chat Function ---
|
91 |
def predict(message, history, system_prompt, max_new_tokens, temperature, top_p, top_k, repeat_penalty):
|
92 |
if llm is None:
|
93 |
return "Model not loaded. Please check the logs."
|
94 |
|
95 |
-
# Qwen specific chat format elements
|
96 |
-
im_start_token = "<|im_start|>"
|
97 |
-
im_end_token = "<|im_end|>"
|
98 |
# Common stop tokens for Qwen-like models
|
99 |
-
|
100 |
-
|
101 |
|
102 |
-
#
|
103 |
-
messages = []
|
104 |
if system_prompt and system_prompt.strip():
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
for human_msg, ai_msg in history:
|
108 |
-
messages.append({"role": "user", "content": human_msg})
|
109 |
-
if ai_msg is not None: # ai_msg could be None if it's the first turn and history is just the user prompt
|
110 |
-
messages.append({"role": "assistant", "content": ai_msg})
|
111 |
-
messages.append({"role": "user", "content": message})
|
112 |
|
113 |
print("\n--- Input to Model ---")
|
114 |
print(f"System Prompt: {system_prompt if system_prompt and system_prompt.strip() else 'None'}")
|
115 |
-
print(f"History: {history}")
|
116 |
print(f"Current Message: {message}")
|
117 |
-
print(f"Formatted messages for create_chat_completion: {
|
118 |
print("--- End Input to Model ---\n")
|
119 |
|
120 |
assistant_response_text = ""
|
@@ -123,14 +128,13 @@ def predict(message, history, system_prompt, max_new_tokens, temperature, top_p,
|
|
123 |
try:
|
124 |
print("Attempting generation with llm.create_chat_completion()...")
|
125 |
response = llm.create_chat_completion(
|
126 |
-
messages=
|
127 |
temperature=temperature,
|
128 |
top_p=top_p,
|
129 |
top_k=top_k,
|
130 |
repeat_penalty=repeat_penalty,
|
131 |
max_tokens=max_new_tokens,
|
132 |
stop=stop_tokens,
|
133 |
-
# stream=True # For streaming output, Gradio handles this differently
|
134 |
)
|
135 |
assistant_response_text = response['choices'][0]['message']['content'].strip()
|
136 |
print(f"create_chat_completion successful. Raw response: {response['choices'][0]['message']}")
|
@@ -139,16 +143,15 @@ def predict(message, history, system_prompt, max_new_tokens, temperature, top_p,
|
|
139 |
print(f"Error during create_chat_completion: {e_chat_completion}")
|
140 |
print("Falling back to manual prompt construction and llm()...")
|
141 |
|
142 |
-
# Construct prompt manually as a fallback (simplified Qwen format)
|
143 |
prompt = ""
|
144 |
if system_prompt and system_prompt.strip():
|
145 |
-
prompt += f"{
|
146 |
|
147 |
-
for human_msg, ai_msg in history:
|
148 |
-
prompt += f"{
|
149 |
if ai_msg is not None:
|
150 |
-
prompt += f"{
|
151 |
-
prompt += f"{
|
152 |
|
153 |
print(f"Fallback prompt: {prompt}")
|
154 |
|
@@ -161,7 +164,7 @@ def predict(message, history, system_prompt, max_new_tokens, temperature, top_p,
|
|
161 |
top_k=top_k,
|
162 |
repeat_penalty=repeat_penalty,
|
163 |
stop=stop_tokens,
|
164 |
-
echo=False
|
165 |
)
|
166 |
assistant_response_text = output['choices'][0]['text'].strip()
|
167 |
print(f"Fallback llm() successful. Raw output: {output['choices'][0]['text']}")
|
@@ -190,8 +193,9 @@ def create_gradio_interface():
|
|
190 |
[],
|
191 |
elem_id="chatbot",
|
192 |
label="Chat Window",
|
193 |
-
bubble_full_width=False,
|
194 |
height=500,
|
|
|
195 |
)
|
196 |
user_input = gr.Textbox(
|
197 |
show_label=False,
|
@@ -208,7 +212,7 @@ def create_gradio_interface():
|
|
208 |
lines=3
|
209 |
)
|
210 |
max_new_tokens_slider = gr.Slider(
|
211 |
-
minimum=32, maximum=N_CTX, value=DEFAULT_MAX_NEW_TOKENS, step=32,
|
212 |
label="Max New Tokens"
|
213 |
)
|
214 |
temperature_slider = gr.Slider(
|
@@ -227,88 +231,66 @@ def create_gradio_interface():
|
|
227 |
minimum=1.0, maximum=2.0, value=DEFAULT_REPEAT_PENALTY, step=0.05,
|
228 |
label="Repeat Penalty"
|
229 |
)
|
230 |
-
# Hidden status textbox for errors
|
231 |
status_display = gr.Textbox(label="Status", interactive=False, visible=False)
|
232 |
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
# Update status display if model not loaded
|
238 |
-
# This part is tricky as Gradio submit doesn't easily update arbitrary components outside its output
|
239 |
-
# For now, errors from predict will be returned in the chat.
|
240 |
-
# A more robust way would be a global status or specific UI element.
|
241 |
-
print("Attempted to chat but LLM is not loaded.")
|
242 |
-
# A simple way to indicate an issue if llm is None
|
243 |
-
chat_history.append((message, "ERROR: Model not loaded. Please check server logs."))
|
244 |
-
return "", chat_history, "ERROR: Model not loaded."
|
245 |
-
|
246 |
-
# Append user message
|
247 |
-
chat_history.append((message, None))
|
248 |
-
# We pass the full system prompt and params to predict
|
249 |
-
return "", chat_history, sys_prompt, max_tokens, temp, top_p_val, top_k_val, rep_penalty
|
250 |
-
|
251 |
-
|
252 |
-
# Connect user input to the generation
|
253 |
-
submit_args = {
|
254 |
-
"fn": predict,
|
255 |
-
"inputs": [user_input, chatbot, system_prompt_input, max_new_tokens_slider, temperature_slider, top_p_slider, top_k_slider, repeat_penalty_slider],
|
256 |
-
"outputs": [chatbot], # Predict will update the last AI message in chatbot
|
257 |
-
}
|
258 |
-
|
259 |
-
# Gradio's ChatInterface simplifies history management, but for custom layouts, we manage it manually.
|
260 |
-
# Here, we'll use a more direct approach like gr.Interface or manual updates.
|
261 |
-
# Since we use gr.Chatbot and manage history, we need to ensure `predict` gets the right state.
|
262 |
-
# `predict` directly takes history and returns the new AI response.
|
263 |
-
# Gradio's `gr.Chatbot` will automatically append the (user, ai_response) pair.
|
264 |
|
265 |
-
user_input.submit(
|
266 |
-
predict,
|
267 |
-
[user_input, chatbot, system_prompt_input, max_new_tokens_slider, temperature_slider, top_p_slider, top_k_slider, repeat_penalty_slider],
|
268 |
-
[user_input, chatbot], # Clear user_input, update chatbot
|
269 |
-
# The `predict` function returns only the assistant's response string.
|
270 |
-
# Gradio Chatbot expects the new AI message to be the output to update the last turn.
|
271 |
-
# So, we need a wrapper if we want to clear user_input and update chatbot
|
272 |
-
)
|
273 |
-
|
274 |
-
# A slightly cleaner way to handle chatbot updates with custom parameters
|
275 |
-
# and clearing input box:
|
276 |
-
def user_chat_fn(user_message, chat_history, sys_prompt, max_tok, temp, top_p_val, top_k_val, rep_pen):
|
277 |
if llm is None:
|
278 |
-
|
279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
-
#
|
282 |
-
|
283 |
-
|
|
|
284 |
|
285 |
-
|
286 |
-
|
287 |
-
|
|
|
|
|
|
|
|
|
288 |
|
289 |
-
# The last message in history is the user's current message
|
290 |
-
user_message = chat_history[-1][0]
|
291 |
-
# The history to pass to `predict` should not include the current user turn's empty AI response
|
292 |
-
history_for_predict = chat_history[:-1]
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
return
|
297 |
|
298 |
-
# Chain the actions: user input -> update chatbot (user msg) -> bot generates -> update chatbot (bot msg)
|
299 |
user_input.submit(
|
300 |
user_chat_fn,
|
301 |
[user_input, chatbot, system_prompt_input, max_new_tokens_slider, temperature_slider, top_p_slider, top_k_slider, repeat_penalty_slider],
|
302 |
-
[user_input, chatbot, system_prompt_input, max_new_tokens_slider, temperature_slider, top_p_slider, top_k_slider, repeat_penalty_slider],
|
303 |
-
queue=False
|
304 |
).then(
|
305 |
bot_response_fn,
|
306 |
[chatbot, system_prompt_input, max_new_tokens_slider, temperature_slider, top_p_slider, top_k_slider, repeat_penalty_slider],
|
307 |
-
[chatbot],
|
308 |
-
queue=True
|
309 |
)
|
310 |
|
311 |
-
|
312 |
gr.Examples(
|
313 |
examples=[
|
314 |
["Hello, how are you today?", "You are a friendly and helpful AI assistant specializing in concise answers."],
|
@@ -317,21 +299,18 @@ def create_gradio_interface():
|
|
317 |
["Explain the concept of black holes to a 5-year-old.", "Keep it simple and use an analogy."]
|
318 |
],
|
319 |
inputs=[user_input, system_prompt_input],
|
320 |
-
# outputs=[chatbot], # Examples don't directly feed to chatbot output here with this setup
|
321 |
-
# fn=lambda q, s: (None, [(q, predict(q, [], s, ...default_params...))]) # Complex to run predict for examples
|
322 |
-
# For simplicity, examples just populate the input fields.
|
323 |
)
|
324 |
|
325 |
with gr.Accordion("Advanced/Debug Info", open=False):
|
|
|
326 |
gr.Markdown(f"""
|
327 |
- **Model File:** `{LOCAL_MODEL_PATH}`
|
328 |
- **N_CTX:** `{N_CTX}`
|
329 |
- **N_THREADS:** `{N_THREADS if N_THREADS is not None else 'Auto'}`
|
330 |
- **N_GPU_LAYERS:** `{N_GPU_LAYERS}`
|
331 |
- **Log Verbosity (llama.cpp):** `{VERBOSE_LLAMA}`
|
332 |
-
- **Stop Tokens Used:** `{
|
333 |
""")
|
334 |
-
# Add a button to attempt model reload if it failed initially
|
335 |
reload_button = gr.Button("Attempt to Reload Model")
|
336 |
reload_status = gr.Label(value="Model Status: Unknown")
|
337 |
|
@@ -343,7 +322,17 @@ def create_gradio_interface():
|
|
343 |
|
344 |
def attempt_reload():
|
345 |
global llm
|
346 |
-
llm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
if load_llm_model():
|
348 |
return "Model reloaded successfully!"
|
349 |
else:
|
@@ -351,8 +340,6 @@ def create_gradio_interface():
|
|
351 |
|
352 |
reload_button.click(attempt_reload, outputs=[reload_status])
|
353 |
iface.load(update_reload_status, outputs=[reload_status]) # Update status on interface load
|
354 |
-
|
355 |
-
|
356 |
return iface
|
357 |
|
358 |
# --- Main Execution ---
|
@@ -362,19 +349,15 @@ if __name__ == "__main__":
|
|
362 |
|
363 |
if model_available:
|
364 |
if not load_llm_model():
|
365 |
-
print("
|
366 |
-
print("You can try to reload the model via the 'Advanced/Debug Info' section in the UI.")
|
367 |
else:
|
368 |
print("Model ready.")
|
369 |
else:
|
370 |
-
print("Model download failed. Cannot
|
371 |
-
print("The Gradio interface will start, but it will not be functional.")
|
372 |
|
373 |
print("Creating Gradio interface...")
|
374 |
app_interface = create_gradio_interface()
|
375 |
|
376 |
print("Launching Gradio interface...")
|
377 |
-
# Share=True is useful for public links if running locally, but HF Spaces handles public URL.
|
378 |
-
# In_browser=True to open in browser locally.
|
379 |
app_interface.launch()
|
380 |
-
print("Gradio interface launched.
|
|
|
6 |
|
7 |
# --- Configuration ---
|
8 |
MODEL_REPO_ID = "unsloth/DeepSeek-R1-0528-Qwen3-8B-GGUF"
|
9 |
+
MODEL_FILENAME = "DeepSeek-R1-0528-Qwen3-8B-Q4_K_M.gguf" # IMPORTANT: Verify this filename
|
10 |
+
LOCAL_MODEL_PATH = f"./{MODEL_FILENAME}"
|
|
|
11 |
|
12 |
+
# LLM Llama Parameters
|
13 |
+
N_CTX = 2048
|
14 |
+
N_THREADS = None
|
15 |
+
N_GPU_LAYERS = 0
|
16 |
+
VERBOSE_LLAMA = True
|
|
|
17 |
|
18 |
# Generation parameters
|
19 |
DEFAULT_MAX_NEW_TOKENS = 512
|
|
|
22 |
DEFAULT_TOP_K = 40
|
23 |
DEFAULT_REPEAT_PENALTY = 1.1
|
24 |
|
25 |
+
# Qwen specific chat format elements (defined globally)
|
26 |
+
IM_START_TOKEN = "<|im_start|>"
|
27 |
+
IM_END_TOKEN = "<|im_end|>"
|
28 |
+
|
29 |
# --- Global variable for the model ---
|
30 |
llm = None
|
31 |
|
|
|
39 |
repo_id=MODEL_REPO_ID,
|
40 |
filename=MODEL_FILENAME,
|
41 |
local_dir=".",
|
42 |
+
local_dir_use_symlinks=False,
|
43 |
resume_download=True
|
44 |
)
|
45 |
end_time = time.time()
|
|
|
47 |
return True
|
48 |
except Exception as e:
|
49 |
print(f"Error downloading model: {e}")
|
|
|
50 |
print(f"Attempted to download: {MODEL_REPO_ID}/{MODEL_FILENAME}")
|
51 |
return False
|
52 |
else:
|
53 |
print(f"Model file {MODEL_FILENAME} already exists.")
|
54 |
return True
|
55 |
+
return False # Should not be reached if logic is correct, but good for completeness
|
56 |
|
57 |
# --- Model Loading ---
|
58 |
def load_llm_model():
|
59 |
global llm
|
60 |
+
if llm is None:
|
61 |
if not os.path.exists(LOCAL_MODEL_PATH):
|
62 |
print("Model file not found. Cannot load.")
|
63 |
return False
|
|
|
70 |
n_threads=N_THREADS,
|
71 |
n_gpu_layers=N_GPU_LAYERS,
|
72 |
verbose=VERBOSE_LLAMA,
|
|
|
73 |
)
|
74 |
end_time = time.time()
|
75 |
print(f"Model loaded successfully in {end_time - start_time:.2f} seconds.")
|
76 |
return True
|
77 |
except Exception as e:
|
78 |
print(f"Error loading Llama model: {e}")
|
79 |
+
print(f"If on resource-constrained environment, model ({MODEL_FILENAME}, ~{os.path.getsize(LOCAL_MODEL_PATH)/(1024**3):.2f}GB if exists) might be too large.")
|
80 |
+
llm = None
|
|
|
|
|
|
|
81 |
return False
|
82 |
else:
|
83 |
print("Model already loaded.")
|
84 |
return True
|
85 |
|
|
|
86 |
# --- Chat Function ---
|
87 |
def predict(message, history, system_prompt, max_new_tokens, temperature, top_p, top_k, repeat_penalty):
|
88 |
if llm is None:
|
89 |
return "Model not loaded. Please check the logs."
|
90 |
|
|
|
|
|
|
|
91 |
# Common stop tokens for Qwen-like models
|
92 |
+
# Accessing global IM_START_TOKEN and IM_END_TOKEN
|
93 |
+
stop_tokens = [IM_END_TOKEN, IM_START_TOKEN + "user", IM_START_TOKEN + "system", llm.token_eos_str()] # Use string representation of EOS
|
94 |
|
95 |
+
messages_for_api = [] # Renamed to avoid conflict with Gradio's 'messages' type
|
|
|
96 |
if system_prompt and system_prompt.strip():
|
97 |
+
messages_for_api.append({"role": "system", "content": system_prompt.strip()})
|
98 |
+
|
99 |
+
# History for Gradio Chatbot with type="messages" is already in the correct format
|
100 |
+
# history will be a list of lists, where each inner list is [user_msg, ai_msg]
|
101 |
+
# or if type="messages", it's a list of dicts.
|
102 |
+
# Let's assume for now the input `history` from chatbot (when type="tuples")
|
103 |
+
# needs conversion if predict is called directly with such history.
|
104 |
+
# If chatbot type="messages", history is already List[Dict[str, str]]
|
105 |
+
# The `user_chat_fn` and `bot_response_fn` handle history in `messages` format for the chatbot.
|
106 |
+
# So, when `predict` is called by `bot_response_fn`, `history` is actually `history_for_predict`
|
107 |
+
# which is `chat_history[:-1]`. `chat_history` is a list of tuples.
|
108 |
+
# We need to convert this tuple-style history to OpenAI dict style for create_chat_completion.
|
109 |
+
|
110 |
+
# The history passed from `bot_response_fn` (history_for_predict) is list of [user, assistant] tuples
|
111 |
+
for human_msg, ai_msg in history: # history here is history_for_predict from bot_response_fn
|
112 |
+
messages_for_api.append({"role": "user", "content": human_msg})
|
113 |
+
if ai_msg is not None:
|
114 |
+
messages_for_api.append({"role": "assistant", "content": ai_msg})
|
115 |
+
messages_for_api.append({"role": "user", "content": message})
|
116 |
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
print("\n--- Input to Model ---")
|
119 |
print(f"System Prompt: {system_prompt if system_prompt and system_prompt.strip() else 'None'}")
|
120 |
+
print(f"History (tuples format for predict): {history}")
|
121 |
print(f"Current Message: {message}")
|
122 |
+
print(f"Formatted messages for create_chat_completion: {messages_for_api}")
|
123 |
print("--- End Input to Model ---\n")
|
124 |
|
125 |
assistant_response_text = ""
|
|
|
128 |
try:
|
129 |
print("Attempting generation with llm.create_chat_completion()...")
|
130 |
response = llm.create_chat_completion(
|
131 |
+
messages=messages_for_api,
|
132 |
temperature=temperature,
|
133 |
top_p=top_p,
|
134 |
top_k=top_k,
|
135 |
repeat_penalty=repeat_penalty,
|
136 |
max_tokens=max_new_tokens,
|
137 |
stop=stop_tokens,
|
|
|
138 |
)
|
139 |
assistant_response_text = response['choices'][0]['message']['content'].strip()
|
140 |
print(f"create_chat_completion successful. Raw response: {response['choices'][0]['message']}")
|
|
|
143 |
print(f"Error during create_chat_completion: {e_chat_completion}")
|
144 |
print("Falling back to manual prompt construction and llm()...")
|
145 |
|
|
|
146 |
prompt = ""
|
147 |
if system_prompt and system_prompt.strip():
|
148 |
+
prompt += f"{IM_START_TOKEN}system\n{system_prompt.strip()}{IM_END_TOKEN}\n"
|
149 |
|
150 |
+
for human_msg, ai_msg in history: # history here is history_for_predict
|
151 |
+
prompt += f"{IM_START_TOKEN}user\n{human_msg}{IM_END_TOKEN}\n"
|
152 |
if ai_msg is not None:
|
153 |
+
prompt += f"{IM_START_TOKEN}assistant\n{ai_msg}{IM_END_TOKEN}\n"
|
154 |
+
prompt += f"{IM_START_TOKEN}user\n{message}{IM_END_TOKEN}\n{IM_START_TOKEN}assistant\n"
|
155 |
|
156 |
print(f"Fallback prompt: {prompt}")
|
157 |
|
|
|
164 |
top_k=top_k,
|
165 |
repeat_penalty=repeat_penalty,
|
166 |
stop=stop_tokens,
|
167 |
+
echo=False
|
168 |
)
|
169 |
assistant_response_text = output['choices'][0]['text'].strip()
|
170 |
print(f"Fallback llm() successful. Raw output: {output['choices'][0]['text']}")
|
|
|
193 |
[],
|
194 |
elem_id="chatbot",
|
195 |
label="Chat Window",
|
196 |
+
# bubble_full_width=False, # Deprecated
|
197 |
height=500,
|
198 |
+
type="messages" # Use OpenAI-style messages format
|
199 |
)
|
200 |
user_input = gr.Textbox(
|
201 |
show_label=False,
|
|
|
212 |
lines=3
|
213 |
)
|
214 |
max_new_tokens_slider = gr.Slider(
|
215 |
+
minimum=32, maximum=N_CTX, value=DEFAULT_MAX_NEW_TOKENS, step=32,
|
216 |
label="Max New Tokens"
|
217 |
)
|
218 |
temperature_slider = gr.Slider(
|
|
|
231 |
minimum=1.0, maximum=2.0, value=DEFAULT_REPEAT_PENALTY, step=0.05,
|
232 |
label="Repeat Penalty"
|
233 |
)
|
|
|
234 |
status_display = gr.Textbox(label="Status", interactive=False, visible=False)
|
235 |
|
236 |
|
237 |
+
def user_chat_fn(user_message, chat_history_messages, sys_prompt, max_tok, temp, top_p_val, top_k_val, rep_pen):
|
238 |
+
if not user_message.strip(): # Do nothing if user message is empty
|
239 |
+
return "", chat_history_messages, sys_prompt, max_tok, temp, top_p_val, top_k_val, rep_pen
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
if llm is None:
|
242 |
+
chat_history_messages.append({"role": "user", "content": user_message})
|
243 |
+
chat_history_messages.append({"role": "assistant", "content": "ERROR: Model not loaded. Check server logs."})
|
244 |
+
return "", chat_history_messages, sys_prompt, max_tok, temp, top_p_val, top_k_val, rep_pen
|
245 |
+
|
246 |
+
chat_history_messages.append({"role": "user", "content": user_message})
|
247 |
+
# Add a placeholder for assistant message that bot_response_fn will fill
|
248 |
+
chat_history_messages.append({"role": "assistant", "content": None})
|
249 |
+
return "", chat_history_messages, sys_prompt, max_tok, temp, top_p_val, top_k_val, rep_pen
|
250 |
+
|
251 |
+
def bot_response_fn(chat_history_messages, sys_prompt, max_tok, temp, top_p_val, top_k_val, rep_pen):
|
252 |
+
if llm is None or chat_history_messages[-1]["content"] is not None : # If model not loaded or already processed
|
253 |
+
return chat_history_messages
|
254 |
+
|
255 |
+
user_message = chat_history_messages[-2]["content"] # Get the last user message
|
256 |
+
|
257 |
+
# Convert OpenAI-style message history (List[Dict]) to tuple-style for predict's current internal logic
|
258 |
+
history_for_predict_tuples = []
|
259 |
+
# Iterate up to the second to last message (the current user's message)
|
260 |
+
# Each pair of (user, assistant) forms one turn for the tuple history
|
261 |
+
i = 0
|
262 |
+
temp_history = chat_history_messages[:-2] # Exclude current user and assistant placeholder
|
263 |
|
264 |
+
# Skip system prompt if present at the beginning for tuple conversion
|
265 |
+
start_index = 0
|
266 |
+
if temp_history and temp_history[0]["role"] == "system":
|
267 |
+
start_index = 1 # System prompt handled separately in predict
|
268 |
|
269 |
+
for i in range(start_index, len(temp_history), 2):
|
270 |
+
if i + 1 < len(temp_history) and temp_history[i]["role"] == "user" and temp_history[i+1]["role"] == "assistant":
|
271 |
+
history_for_predict_tuples.append(
|
272 |
+
(temp_history[i]["content"], temp_history[i+1]["content"])
|
273 |
+
)
|
274 |
+
elif temp_history[i]["role"] == "user": # Handle case where last turn was only a user message (shouldn't happen if paired)
|
275 |
+
history_for_predict_tuples.append((temp_history[i]["content"], None))
|
276 |
|
|
|
|
|
|
|
|
|
277 |
|
278 |
+
bot_msg_content = predict(user_message, history_for_predict_tuples, sys_prompt, max_tok, temp, top_p_val, top_k_val, rep_pen)
|
279 |
+
chat_history_messages[-1]["content"] = bot_msg_content # Update the assistant's placeholder message
|
280 |
+
return chat_history_messages
|
281 |
|
|
|
282 |
user_input.submit(
|
283 |
user_chat_fn,
|
284 |
[user_input, chatbot, system_prompt_input, max_new_tokens_slider, temperature_slider, top_p_slider, top_k_slider, repeat_penalty_slider],
|
285 |
+
[user_input, chatbot, system_prompt_input, max_new_tokens_slider, temperature_slider, top_p_slider, top_k_slider, repeat_penalty_slider],
|
286 |
+
queue=False
|
287 |
).then(
|
288 |
bot_response_fn,
|
289 |
[chatbot, system_prompt_input, max_new_tokens_slider, temperature_slider, top_p_slider, top_k_slider, repeat_penalty_slider],
|
290 |
+
[chatbot],
|
291 |
+
queue=True
|
292 |
)
|
293 |
|
|
|
294 |
gr.Examples(
|
295 |
examples=[
|
296 |
["Hello, how are you today?", "You are a friendly and helpful AI assistant specializing in concise answers."],
|
|
|
299 |
["Explain the concept of black holes to a 5-year-old.", "Keep it simple and use an analogy."]
|
300 |
],
|
301 |
inputs=[user_input, system_prompt_input],
|
|
|
|
|
|
|
302 |
)
|
303 |
|
304 |
with gr.Accordion("Advanced/Debug Info", open=False):
|
305 |
+
# Accessing global IM_START_TOKEN and IM_END_TOKEN
|
306 |
gr.Markdown(f"""
|
307 |
- **Model File:** `{LOCAL_MODEL_PATH}`
|
308 |
- **N_CTX:** `{N_CTX}`
|
309 |
- **N_THREADS:** `{N_THREADS if N_THREADS is not None else 'Auto'}`
|
310 |
- **N_GPU_LAYERS:** `{N_GPU_LAYERS}`
|
311 |
- **Log Verbosity (llama.cpp):** `{VERBOSE_LLAMA}`
|
312 |
+
- **Stop Tokens Used (Conceptual):** `{IM_START_TOKEN}system`, `{IM_START_TOKEN}user`, `{IM_END_TOKEN}`, `EOS_TOKEN`
|
313 |
""")
|
|
|
314 |
reload_button = gr.Button("Attempt to Reload Model")
|
315 |
reload_status = gr.Label(value="Model Status: Unknown")
|
316 |
|
|
|
322 |
|
323 |
def attempt_reload():
|
324 |
global llm
|
325 |
+
if llm is not None:
|
326 |
+
try:
|
327 |
+
# Attempt to free existing model if Llama.cpp supports it or by reassigning
|
328 |
+
print("Freeing existing model instance (if any)...")
|
329 |
+
del llm # Explicitly delete to trigger __del__ if possible
|
330 |
+
llm = None
|
331 |
+
import gc
|
332 |
+
gc.collect() # Suggest garbage collection
|
333 |
+
except Exception as e_del:
|
334 |
+
print(f"Error during manual deletion of llm: {e_del}")
|
335 |
+
|
336 |
if load_llm_model():
|
337 |
return "Model reloaded successfully!"
|
338 |
else:
|
|
|
340 |
|
341 |
reload_button.click(attempt_reload, outputs=[reload_status])
|
342 |
iface.load(update_reload_status, outputs=[reload_status]) # Update status on interface load
|
|
|
|
|
343 |
return iface
|
344 |
|
345 |
# --- Main Execution ---
|
|
|
349 |
|
350 |
if model_available:
|
351 |
if not load_llm_model():
|
352 |
+
print("Initial model loading failed. Gradio will start; use UI to attempt reload.")
|
|
|
353 |
else:
|
354 |
print("Model ready.")
|
355 |
else:
|
356 |
+
print("Model download failed. Cannot load model. Gradio will start; chat will be non-functional.")
|
|
|
357 |
|
358 |
print("Creating Gradio interface...")
|
359 |
app_interface = create_gradio_interface()
|
360 |
|
361 |
print("Launching Gradio interface...")
|
|
|
|
|
362 |
app_interface.launch()
|
363 |
+
print("Gradio interface launched.")
|