File size: 9,967 Bytes
b8b8495 c932e0c b8b8495 c932e0c b8b8495 6dd7a3f b8b8495 6dd7a3f b8b8495 c932e0c b8b8495 6dd7a3f b8b8495 6dd7a3f b8b8495 c932e0c b8b8495 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import os
import pickle
import langchain
import faiss
from langchain import HuggingFaceHub
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import DirectoryLoader, TextLoader, UnstructuredHTMLLoader, UnstructuredPDFLoader, UnstructuredWordDocumentLoader, PyPDFLoader
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceHubEmbeddings
from langchain.memory import ConversationBufferWindowMemory
from langchain.llms.openai import OpenAI, OpenAIChat
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.faiss import FAISS
from langchain.cache import InMemoryCache
from langchain.chat_models import ChatGooglePalm
import traceback
langchain.llm_cache = InMemoryCache()
global model_name
models = ["GPT-3.5", "Flan UL2", "GPT-4", "Flan T5", "Palm"]
pickle_file = "_vs.pkl"
updated_pickle_file = "_vs_updated.pkl"
index_file = "_vs.index"
models_folder = "models/"
llm = ChatOpenAI(model_name="gpt-4", temperature=0.1)
embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')
chat_history = []
memory = ConversationBufferWindowMemory(memory_key="chat_history", k=10)
vectorstore_index = None
# get name to be used in prompt from environment variable `name`
name = os.environ.get("name", "Rohan")
system_template = """You are ROAR, {name}'s personal assistant supposed to ANSWER QUESTIONS ON HIS BEHALF.
STRICTLY FOLLOW THIS: FOR OPINIONS, PREFERENCES, EXPERIENCES,ALWAYS ANSWER IN FIRST PERSON AS IF YOU ARE {name}. ALWAYS Generate this response with experiences/opinions using {name}'s RESUME available in context/vectorstore.
Response should be in professional language and tone, impressive, catchy, and grammatically correct.
Use {name}'s resume and your knowledge of his experience and skills to answer questions to the best of your ability.
Answer the question as if you are assisting {name} or answering on his behalf.
----------------
This activity of answering questions on {name}'s behalf will be called Roar.
For example: If someone wants to ask you a question, they will say "Roar it" and you will answer the question on {name}'s behalf by generating a response using {name}'s resume and your knowledge of his experience and skills.
Add a qwirky and funny line in the end to encourage the user to try more Roars as they are free.
----------------
{context}
"""
# append name in system template to be used in prompt
system_template = system_template.format(name=name, context="{context}")
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
def set_model_and_embeddings(model):
global chat_history
set_model(model)
# set_embeddings(model)
chat_history = []
def set_model(model):
global llm
print("Setting model to " + str(model))
if model == "GPT-3.5":
print("Loading GPT-3.5")
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.5)
elif model == "GPT-4":
print("Loading GPT-4")
llm = OpenAI(model_name="gpt-4", temperature=1)
elif model == "Flan UL2":
print("Loading Flan-UL2")
llm = HuggingFaceHub(repo_id="google/flan-ul2", model_kwargs={"temperature": 0.1, "max_new_tokens":500})
elif model == "Flan T5":
print("Loading Flan T5")
llm = HuggingFaceHub(repo_id="google/flan-t5-base", model_kwargs={"temperature": 0.1})
elif model == "Palm":
llm = ChatGooglePalm(temperature=0)
else:
print("Loading GPT-3.5 from else")
llm = OpenAI(model_name="text-davinci-002", temperature=0.1)
def set_embeddings(model):
global embeddings
if model == "GPT-3.5" or model == "GPT-4":
print("Loading OpenAI embeddings")
embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')
elif model == "Flan UL2" or model == "Flan T5":
print("Loading Hugging Face embeddings")
embeddings = HuggingFaceHubEmbeddings(repo_id="sentence-transformers/all-MiniLM-L6-v2")
def get_search_index(model, first_time=False):
global vectorstore_index
if not first_time:
print("Using updated pickle file")
file = updated_pickle_file
else:
print("Using base pickle file")
file = pickle_file
if os.path.isfile(get_file_path(model, file)) and os.path.isfile(
get_file_path(model, index_file)) and os.path.getsize(get_file_path(model, file)) > 0:
# Load index from pickle file
search_index = load_index(model)
else:
search_index = create_index(model)
vectorstore_index = search_index
return search_index
def load_index(model):
with open(get_file_path(model, pickle_file), "rb") as f:
search_index = pickle.load(f)
print("Loaded index")
return search_index
def create_index(model):
sources = fetch_data_for_embeddings()
source_chunks = split_docs(sources)
search_index = search_index_from_docs(source_chunks)
faiss.write_index(search_index.index, get_file_path(model, index_file))
# Save index to pickle file
with open(get_file_path(model, pickle_file), "wb") as f:
pickle.dump(search_index, f)
print("Created index")
return search_index
def get_file_path(model, file):
# If model is GPT3.5 or GPT4 return models_folder + openai + file else return models_folder + hf + file
if model == "GPT-3.5" or model == "GPT-4":
return models_folder + "openai" + file
elif model == "Palm":
return models_folder + "palm" + file
else:
return models_folder + "hf" + file
def search_index_from_docs(source_chunks):
# print("source chunks: " + str(len(source_chunks)))
# print("embeddings: " + str(embeddings))
search_index = FAISS.from_documents(source_chunks, embeddings)
return search_index
def get_html_files():
loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True)
document_list = loader.load()
return document_list
def fetch_data_for_embeddings():
document_list = get_word_files()
document_list.extend(get_html_files())
print("document list: " + str(len(document_list)))
return document_list
def get_word_files():
loader = DirectoryLoader('docs', glob="**/*.docx", loader_cls=UnstructuredWordDocumentLoader, recursive=True)
document_list = loader.load()
return document_list
def split_docs(docs):
splitter = CharacterTextSplitter(separator=" ", chunk_size=800, chunk_overlap=0)
source_chunks = splitter.split_documents(docs)
print("chunks: " + str(len(source_chunks)))
return source_chunks
def load_documents(file_paths):
# Check the type of file from the extension and load it accordingly
document_list = []
for file_path in file_paths:
if file_path.endswith(".txt"):
loader = TextLoader(file_path)
elif file_path.endswith(".docx"):
loader = UnstructuredWordDocumentLoader(file_path)
elif file_path.endswith(".html"):
loader = UnstructuredHTMLLoader(file_path)
elif file_path.endswith(".pdf"):
loader = PyPDFLoader(file_path)
else:
print("Unsupported file type")
raise Exception("Unsupported file type")
docs = loader.load()
document_list.extend(docs)
# print("Loaded " + file_path)
print("Loaded " + str(len(document_list)) + " documents")
return document_list
def add_to_index(docs, index, model):
global vectorstore_index
index.add_documents(docs)
with open(get_file_path(model, updated_pickle_file), "wb") as f:
pickle.dump(index, f)
vectorstore_index = index
print("Vetorstore index updated")
return True
def ingest(file_paths, model):
print("Ingesting files")
try:
# handle txt, docx, html, pdf
docs = load_documents(file_paths)
split_docs(docs)
add_to_index(docs, vectorstore_index, model)
print("Ingestion complete")
except Exception as e:
traceback.print_exc()
return False
return True
def get_qa_chain(vectorstore_index):
global llm, model_name
print(llm)
# embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76)
# compression_retriever = ContextualCompressionRetriever(base_compressor=embeddings_filter, base_retriever=gpt_3_5_index.as_retriever())
retriever = vectorstore_index.as_retriever(search_type="similarity_score_threshold",
search_kwargs={"score_threshold": .8})
chain = ConversationalRetrievalChain.from_llm(llm, retriever, return_source_documents=True,
verbose=True, get_chat_history=get_chat_history,
combine_docs_chain_kwargs={"prompt": CHAT_PROMPT})
return chain
def get_chat_history(inputs) -> str:
res = []
for human, ai in inputs:
res.append(f"Human:{human}\nAI:{ai}")
return "\n".join(res)
def generate_answer(question) -> str:
global chat_history, vectorstore_index
chain = get_qa_chain(vectorstore_index)
result = chain(
{"question": question, "chat_history": chat_history, "vectordbkwargs": {"search_distance": 0.6}})
chat_history = [(question, result["answer"])]
sources = []
print(result)
for document in result['source_documents']:
# sources.append(document.metadata['url'])
sources.append(document.metadata['source'].split('/')[-1].split('.')[0])
print(sources)
source = ',\n'.join(set(sources))
return result['answer'] + '\nSOURCES: ' + source
|