File size: 9,585 Bytes
4114d85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import { LLMChain } from 'langchain/chains'
import { BaseChatModel } from 'langchain/chat_models/base'
import { VectorStore } from 'langchain/dist/vectorstores/base'
import { Document } from 'langchain/document'
import { PromptTemplate } from 'langchain/prompts'
class TaskCreationChain extends LLMChain {
constructor(prompt: PromptTemplate, llm: BaseChatModel) {
super({ prompt, llm })
}
static from_llm(llm: BaseChatModel): LLMChain {
const taskCreationTemplate: string =
'You are a task creation AI that uses the result of an execution agent' +
' to create new tasks with the following objective: {objective},' +
' The last completed task has the result: {result}.' +
' This result was based on this task description: {task_description}.' +
' These are incomplete tasks list: {incomplete_tasks}.' +
' Based on the result, create new tasks to be completed' +
' by the AI system that do not overlap with incomplete tasks.' +
' Return the tasks as an array.'
const prompt = new PromptTemplate({
template: taskCreationTemplate,
inputVariables: ['result', 'task_description', 'incomplete_tasks', 'objective']
})
return new TaskCreationChain(prompt, llm)
}
}
class TaskPrioritizationChain extends LLMChain {
constructor(prompt: PromptTemplate, llm: BaseChatModel) {
super({ prompt, llm })
}
static from_llm(llm: BaseChatModel): TaskPrioritizationChain {
const taskPrioritizationTemplate: string =
'You are a task prioritization AI tasked with cleaning the formatting of and reprioritizing' +
' the following task list: {task_names}.' +
' Consider the ultimate objective of your team: {objective}.' +
' Do not remove any tasks. Return the result as a numbered list, like:' +
' #. First task' +
' #. Second task' +
' Start the task list with number {next_task_id}.'
const prompt = new PromptTemplate({
template: taskPrioritizationTemplate,
inputVariables: ['task_names', 'next_task_id', 'objective']
})
return new TaskPrioritizationChain(prompt, llm)
}
}
class ExecutionChain extends LLMChain {
constructor(prompt: PromptTemplate, llm: BaseChatModel) {
super({ prompt, llm })
}
static from_llm(llm: BaseChatModel): LLMChain {
const executionTemplate: string =
'You are an AI who performs one task based on the following objective: {objective}.' +
' Take into account these previously completed tasks: {context}.' +
' Your task: {task}.' +
' Response:'
const prompt = new PromptTemplate({
template: executionTemplate,
inputVariables: ['objective', 'context', 'task']
})
return new ExecutionChain(prompt, llm)
}
}
async function getNextTask(
taskCreationChain: LLMChain,
result: string,
taskDescription: string,
taskList: string[],
objective: string
): Promise<any[]> {
const incompleteTasks: string = taskList.join(', ')
const response: string = await taskCreationChain.predict({
result,
task_description: taskDescription,
incomplete_tasks: incompleteTasks,
objective
})
const newTasks: string[] = response.split('\n')
return newTasks.filter((taskName) => taskName.trim()).map((taskName) => ({ task_name: taskName }))
}
interface Task {
task_id: number
task_name: string
}
async function prioritizeTasks(
taskPrioritizationChain: LLMChain,
thisTaskId: number,
taskList: Task[],
objective: string
): Promise<Task[]> {
const next_task_id = thisTaskId + 1
const task_names = taskList.map((t) => t.task_name).join(', ')
const response = await taskPrioritizationChain.predict({ task_names, next_task_id, objective })
const newTasks = response.split('\n')
const prioritizedTaskList: Task[] = []
for (const taskString of newTasks) {
if (!taskString.trim()) {
// eslint-disable-next-line no-continue
continue
}
const taskParts = taskString.trim().split('. ', 2)
if (taskParts.length === 2) {
const task_id = parseInt(taskParts[0].trim(), 10)
const task_name = taskParts[1].trim()
prioritizedTaskList.push({ task_id, task_name })
}
}
return prioritizedTaskList
}
export async function get_top_tasks(vectorStore: VectorStore, query: string, k: number): Promise<string[]> {
const docs = await vectorStore.similaritySearch(query, k)
let returnDocs: string[] = []
for (const doc of docs) {
returnDocs.push(doc.metadata.task)
}
return returnDocs
}
async function executeTask(vectorStore: VectorStore, executionChain: LLMChain, objective: string, task: string, k = 5): Promise<string> {
const context = await get_top_tasks(vectorStore, objective, k)
return executionChain.predict({ objective, context, task })
}
export class BabyAGI {
taskList: Array<Task> = []
taskCreationChain: TaskCreationChain
taskPrioritizationChain: TaskPrioritizationChain
executionChain: ExecutionChain
taskIdCounter = 1
vectorStore: VectorStore
maxIterations = 3
topK = 4
constructor(
taskCreationChain: TaskCreationChain,
taskPrioritizationChain: TaskPrioritizationChain,
executionChain: ExecutionChain,
vectorStore: VectorStore,
maxIterations: number,
topK: number
) {
this.taskCreationChain = taskCreationChain
this.taskPrioritizationChain = taskPrioritizationChain
this.executionChain = executionChain
this.vectorStore = vectorStore
this.maxIterations = maxIterations
this.topK = topK
}
addTask(task: Task) {
this.taskList.push(task)
}
printTaskList() {
// eslint-disable-next-line no-console
console.log('\x1b[95m\x1b[1m\n*****TASK LIST*****\n\x1b[0m\x1b[0m')
// eslint-disable-next-line no-console
this.taskList.forEach((t) => console.log(`${t.task_id}: ${t.task_name}`))
}
printNextTask(task: Task) {
// eslint-disable-next-line no-console
console.log('\x1b[92m\x1b[1m\n*****NEXT TASK*****\n\x1b[0m\x1b[0m')
// eslint-disable-next-line no-console
console.log(`${task.task_id}: ${task.task_name}`)
}
printTaskResult(result: string) {
// eslint-disable-next-line no-console
console.log('\x1b[93m\x1b[1m\n*****TASK RESULT*****\n\x1b[0m\x1b[0m')
// eslint-disable-next-line no-console
console.log(result)
}
getInputKeys(): string[] {
return ['objective']
}
getOutputKeys(): string[] {
return []
}
async call(inputs: Record<string, any>): Promise<string> {
const { objective } = inputs
const firstTask = inputs.first_task || 'Make a todo list'
this.addTask({ task_id: 1, task_name: firstTask })
let numIters = 0
let loop = true
let finalResult = ''
while (loop) {
if (this.taskList.length) {
this.printTaskList()
// Step 1: Pull the first task
const task = this.taskList.shift()
if (!task) break
this.printNextTask(task)
// Step 2: Execute the task
const result = await executeTask(this.vectorStore, this.executionChain, objective, task.task_name, this.topK)
const thisTaskId = task.task_id
finalResult = result
this.printTaskResult(result)
// Step 3: Store the result in Pinecone
const docs = new Document({ pageContent: result, metadata: { task: task.task_name } })
this.vectorStore.addDocuments([docs])
// Step 4: Create new tasks and reprioritize task list
const newTasks = await getNextTask(
this.taskCreationChain,
result,
task.task_name,
this.taskList.map((t) => t.task_name),
objective
)
newTasks.forEach((newTask) => {
this.taskIdCounter += 1
// eslint-disable-next-line no-param-reassign
newTask.task_id = this.taskIdCounter
this.addTask(newTask)
})
this.taskList = await prioritizeTasks(this.taskPrioritizationChain, thisTaskId, this.taskList, objective)
}
numIters += 1
if (this.maxIterations !== null && numIters === this.maxIterations) {
// eslint-disable-next-line no-console
console.log('\x1b[91m\x1b[1m\n*****TASK ENDING*****\n\x1b[0m\x1b[0m')
loop = false
this.taskList = []
}
}
return finalResult
}
static fromLLM(llm: BaseChatModel, vectorstore: VectorStore, maxIterations = 3, topK = 4): BabyAGI {
const taskCreationChain = TaskCreationChain.from_llm(llm)
const taskPrioritizationChain = TaskPrioritizationChain.from_llm(llm)
const executionChain = ExecutionChain.from_llm(llm)
return new BabyAGI(taskCreationChain, taskPrioritizationChain, executionChain, vectorstore, maxIterations, topK)
}
}
|