import { BaseLanguageModel } from 'langchain/base_language' import { ICommonObject, IMessage, INode, INodeData, INodeParams } from '../../../src/Interface' import { CustomChainHandler, getBaseClasses } from '../../../src/utils' import { ConversationalRetrievalQAChain } from 'langchain/chains' import { AIChatMessage, BaseRetriever, HumanChatMessage } from 'langchain/schema' import { BaseChatMemory, BufferMemory, ChatMessageHistory } from 'langchain/memory' import { PromptTemplate } from 'langchain/prompts' const default_qa_template = `Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. {context} Question: {question} Helpful Answer:` const qa_template = `Use the following pieces of context to answer the question at the end. {context} Question: {question} Helpful Answer:` class ConversationalRetrievalQAChain_Chains implements INode { label: string name: string type: string icon: string category: string baseClasses: string[] description: string inputs: INodeParams[] constructor() { this.label = 'Conversational Retrieval QA Chain' this.name = 'conversationalRetrievalQAChain' this.type = 'ConversationalRetrievalQAChain' this.icon = 'chain.svg' this.category = 'Chains' this.description = 'Document QA - built on RetrievalQAChain to provide a chat history component' this.baseClasses = [this.type, ...getBaseClasses(ConversationalRetrievalQAChain)] this.inputs = [ { label: 'Language Model', name: 'model', type: 'BaseLanguageModel' }, { label: 'Vector Store Retriever', name: 'vectorStoreRetriever', type: 'BaseRetriever' }, { label: 'Return Source Documents', name: 'returnSourceDocuments', type: 'boolean', optional: true }, { label: 'System Message', name: 'systemMessagePrompt', type: 'string', rows: 4, additionalParams: true, optional: true, placeholder: 'I want you to act as a document that I am having a conversation with. Your name is "AI Assistant". You will provide me with answers from the given info. If the answer is not included, say exactly "Hmm, I am not sure." and stop after that. Refuse to answer any question not about the info. Never break character.' }, { label: 'Chain Option', name: 'chainOption', type: 'options', options: [ { label: 'MapReduceDocumentsChain', name: 'map_reduce', description: 'Suitable for QA tasks over larger documents and can run the preprocessing step in parallel, reducing the running time' }, { label: 'RefineDocumentsChain', name: 'refine', description: 'Suitable for QA tasks over a large number of documents.' }, { label: 'StuffDocumentsChain', name: 'stuff', description: 'Suitable for QA tasks over a small number of documents.' } ], additionalParams: true, optional: true } ] } async init(nodeData: INodeData): Promise { const model = nodeData.inputs?.model as BaseLanguageModel const vectorStoreRetriever = nodeData.inputs?.vectorStoreRetriever as BaseRetriever const systemMessagePrompt = nodeData.inputs?.systemMessagePrompt as string const returnSourceDocuments = nodeData.inputs?.returnSourceDocuments as boolean const chainOption = nodeData.inputs?.chainOption as string const obj: any = { verbose: process.env.DEBUG === 'true' ? true : false, qaChainOptions: { type: 'stuff', prompt: PromptTemplate.fromTemplate(systemMessagePrompt ? `${systemMessagePrompt}\n${qa_template}` : default_qa_template) }, memory: new BufferMemory({ memoryKey: 'chat_history', inputKey: 'question', outputKey: 'text', returnMessages: true }) } if (returnSourceDocuments) obj.returnSourceDocuments = returnSourceDocuments if (chainOption) obj.qaChainOptions = { ...obj.qaChainOptions, type: chainOption } const chain = ConversationalRetrievalQAChain.fromLLM(model, vectorStoreRetriever, obj) return chain } async run(nodeData: INodeData, input: string, options: ICommonObject): Promise { const chain = nodeData.instance as ConversationalRetrievalQAChain const returnSourceDocuments = nodeData.inputs?.returnSourceDocuments as boolean let model = nodeData.inputs?.model // Temporary fix: https://github.com/hwchase17/langchainjs/issues/754 model.streaming = false chain.questionGeneratorChain.llm = model const obj = { question: input } if (chain.memory && options && options.chatHistory) { const chatHistory = [] const histories: IMessage[] = options.chatHistory const memory = chain.memory as BaseChatMemory for (const message of histories) { if (message.type === 'apiMessage') { chatHistory.push(new AIChatMessage(message.message)) } else if (message.type === 'userMessage') { chatHistory.push(new HumanChatMessage(message.message)) } } memory.chatHistory = new ChatMessageHistory(chatHistory) chain.memory = memory } if (options.socketIO && options.socketIOClientId) { const handler = new CustomChainHandler(options.socketIO, options.socketIOClientId, undefined, returnSourceDocuments) const res = await chain.call(obj, [handler]) if (res.text && res.sourceDocuments) return res return res?.text } else { const res = await chain.call(obj) if (res.text && res.sourceDocuments) return res return res?.text } } } module.exports = { nodeClass: ConversationalRetrievalQAChain_Chains }