import { INode, INodeData, INodeParams } from '../../../src/Interface' import { getBaseClasses } from '../../../src/utils' import { OpenAI, OpenAIInput } from 'langchain/llms/openai' class OpenAI_LLMs implements INode { label: string name: string type: string icon: string category: string description: string baseClasses: string[] inputs: INodeParams[] constructor() { this.label = 'OpenAI' this.name = 'openAI' this.type = 'OpenAI' this.icon = 'openai.png' this.category = 'LLMs' this.description = 'Wrapper around OpenAI large language models' this.baseClasses = [this.type, ...getBaseClasses(OpenAI)] this.inputs = [ { label: 'OpenAI Api Key', name: 'openAIApiKey', type: 'password' }, { label: 'Model Name', name: 'modelName', type: 'options', options: [ { label: 'text-davinci-003', name: 'text-davinci-003' }, { label: 'text-davinci-002', name: 'text-davinci-002' }, { label: 'text-curie-001', name: 'text-curie-001' }, { label: 'text-babbage-001', name: 'text-babbage-001' } ], default: 'text-davinci-003', optional: true }, { label: 'Temperature', name: 'temperature', type: 'number', default: 0.7, optional: true }, { label: 'Max Tokens', name: 'maxTokens', type: 'number', optional: true, additionalParams: true }, { label: 'Top Probability', name: 'topP', type: 'number', optional: true, additionalParams: true }, { label: 'Best Of', name: 'bestOf', type: 'number', optional: true, additionalParams: true }, { label: 'Frequency Penalty', name: 'frequencyPenalty', type: 'number', optional: true, additionalParams: true }, { label: 'Presence Penalty', name: 'presencePenalty', type: 'number', optional: true, additionalParams: true }, { label: 'Batch Size', name: 'batchSize', type: 'number', optional: true, additionalParams: true }, { label: 'Timeout', name: 'timeout', type: 'number', optional: true, additionalParams: true }, { label: 'BasePath', name: 'basepath', type: 'string', optional: true, additionalParams: true } ] } async init(nodeData: INodeData): Promise { const temperature = nodeData.inputs?.temperature as string const modelName = nodeData.inputs?.modelName as string const openAIApiKey = nodeData.inputs?.openAIApiKey as string const maxTokens = nodeData.inputs?.maxTokens as string const topP = nodeData.inputs?.topP as string const frequencyPenalty = nodeData.inputs?.frequencyPenalty as string const presencePenalty = nodeData.inputs?.presencePenalty as string const timeout = nodeData.inputs?.timeout as string const batchSize = nodeData.inputs?.batchSize as string const bestOf = nodeData.inputs?.bestOf as string const streaming = nodeData.inputs?.streaming as boolean const basePath = nodeData.inputs?.basepath as string const obj: Partial & { openAIApiKey?: string } = { temperature: parseInt(temperature, 10), modelName, openAIApiKey, streaming: streaming ?? true } if (maxTokens) obj.maxTokens = parseInt(maxTokens, 10) if (topP) obj.topP = parseInt(topP, 10) if (frequencyPenalty) obj.frequencyPenalty = parseInt(frequencyPenalty, 10) if (presencePenalty) obj.presencePenalty = parseInt(presencePenalty, 10) if (timeout) obj.timeout = parseInt(timeout, 10) if (batchSize) obj.batchSize = parseInt(batchSize, 10) if (bestOf) obj.bestOf = parseInt(bestOf, 10) const model = new OpenAI(obj, { basePath }) return model } } module.exports = { nodeClass: OpenAI_LLMs }