import uvicorn from fastapi import FastAPI, HTTPException from pydantic import BaseModel from fastapi.middleware.cors import CORSMiddleware from sentence_transformers import SentenceTransformer from pinecone import Pinecone, ServerlessSpec import uuid import os from contextlib import asynccontextmanager # --- Environment Setup --- PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME", "memoria-index") CACHE_DIR = "/app/model_cache" # For Hugging Face caching # --- Global Objects --- model = None pc = None index = None @asynccontextmanager async def lifespan(app: FastAPI): global model, pc, index print("Application startup...") if not PINECONE_API_KEY: raise ValueError("PINECONE_API_KEY environment variable not set.") # 1. Load the official, industry-standard lightweight model. print("Loading sentence-transformers/all-MiniLM-L6-v2 model...") model = SentenceTransformer( 'sentence-transformers/all-MiniLM-L6-v2', cache_folder=CACHE_DIR ) print("Model loaded.") # 2. Connect to Pinecone print("Connecting to Pinecone...") pc = Pinecone(api_key=PINECONE_API_KEY) # 3. Get or create the Pinecone index with the correct dimension. model_dimension = model.get_sentence_embedding_dimension() print(f"Model dimension is: {model_dimension}") if PINECONE_INDEX_NAME not in pc.list_indexes().names(): print(f"Creating new Pinecone index: {PINECONE_INDEX_NAME} with dimension {model_dimension}") pc.create_index( name=PINECONE_INDEX_NAME, dimension=model_dimension, metric="cosine", spec=ServerlessSpec(cloud="aws", region="us-east-1") ) index = pc.Index(PINECONE_INDEX_NAME) print("Pinecone setup complete.") yield print("Application shutdown.") # --- Pydantic Models & FastAPI App --- class Memory(BaseModel): content: str class SearchQuery(BaseModel): query: str app = FastAPI( title="Memoria API", version="1.1.0", lifespan=lifespan ) app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"]) # --- API Endpoints --- @app.get("/") def read_root(): return {"status": "ok", "message": "Welcome to the Memoria API!"} @app.post("/save_memory") def save_memory_endpoint(memory: Memory): embedding = model.encode(memory.content).tolist() memory_id = str(uuid.uuid4()) index.upsert(vectors=[{"id": memory_id, "values": embedding, "metadata": {"text": memory.content}}]) print(f"Saved memory: {memory_id}") return {"status": "success", "id": memory_id} @app.post("/search_memory") def search_memory_endpoint(search: SearchQuery): query_embedding = model.encode(search.query).tolist() results = index.query(vector=query_embedding, top_k=5, include_metadata=True) retrieved_documents = [match['metadata']['text'] for match in results['matches']] print(f"Found {len(retrieved_documents)} results for query: '{search.query}'") return {"status": "success", "results": retrieved_documents} if __name__ == "__main__": uvicorn.run("main:app", host="127.0.0.1", port=8000, reload=True)