Spaces:
Paused
Paused
File size: 8,384 Bytes
9e96e5e 3d7d9a4 9e96e5e 6c64b6a 0c89006 6c64b6a 0c89006 6c64b6a 0c89006 6c64b6a 9e96e5e 6c64b6a 9e96e5e 6c64b6a 9e96e5e 927536c 9e96e5e 3a2fda1 c2771c3 9e96e5e 6c64b6a 9e96e5e 6c64b6a 9e96e5e 6c64b6a 9e96e5e 6c64b6a 9e96e5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
import torch
import cv2
import yaml
import shutil
import zipfile
import subprocess
import gradio as gr
import numpy as np
from pathlib import Path
from huggingface_hub import hf_hub_download
from gradio_app import get_anchor_video, inference
# -----------------------------
# Environment Setup
# -----------------------------
HF_HOME = "/app/hf_cache"
os.environ["HF_HOME"] = HF_HOME
os.environ["TRANSFORMERS_CACHE"] = HF_HOME
os.makedirs(HF_HOME, exist_ok=True)
PRETRAINED_DIR = "/app/pretrained"
os.makedirs(PRETRAINED_DIR, exist_ok=True)
INPUT_VIDEOS_DIR = "Input_Videos"
CONFIG_FILE = "config.yaml"
FINAL_RESULTS_DIR = "Final_results"
# -----------------------------
# File Upload Handler
# -----------------------------
def handle_uploads(zip_file, config_file):
# Extract zip
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
zip_ref.extractall(".")
# Write the config file (already a string)
with open(CONFIG_FILE, "w", encoding="utf-8") as f:
f.write(config_file)
# List files
extracted_files = list(Path(".").rglob("*"))
summary = "\n".join(str(f.relative_to(Path("."))) for f in extracted_files if f.is_file())
return f"""β
Upload Successful!
π Extracted Files:
{summary}
π Config file saved to: `{CONFIG_FILE}`
"""
# -----------------------------
# Utility Functions
# -----------------------------
def download_models():
expected_model = os.path.join(PRETRAINED_DIR, "RAFT/raft-things.pth")
if not Path(expected_model).exists():
print("\u2699\ufe0f Downloading pretrained models...")
try:
subprocess.check_call(["bash", "download/download_models.sh"])
print("\u2705 Models downloaded.")
except subprocess.CalledProcessError as e:
print(f"Model download failed: {e}")
else:
print("\u2705 Pretrained models already exist.")
def visualize_depth_npy_as_video(npy_file, fps):
depth_np = np.load(npy_file)
tensor = torch.from_numpy(depth_np)
T, _, H, W = tensor.shape
video_path = "/app/depth_video_preview.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(video_path, fourcc, fps, (W, H))
for i in range(T):
frame = tensor[i, 0].numpy()
norm = (frame - frame.min()) / (frame.max() - frame.min() + 1e-8)
frame_uint8 = (norm * 255).astype(np.uint8)
colored = cv2.applyColorMap(frame_uint8, cv2.COLORMAP_INFERNO)
out.write(colored)
out.release()
return video_path
def zip_dir(dir_path, zip_path):
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zf:
for root, _, files in os.walk(dir_path):
for file in files:
full_path = os.path.join(root, file)
rel_path = os.path.relpath(full_path, dir_path)
zf.write(full_path, rel_path)
# -----------------------------
# Inference Functions
# -----------------------------
from gradio_app import get_anchor_video, inference # Replace with real implementation
def run_batch_process(progress=gr.Progress()):
with open(CONFIG_FILE, 'r') as f:
trajectories = yaml.safe_load(f)
os.makedirs(FINAL_RESULTS_DIR, exist_ok=True)
logs = ""
videos = list(Path(INPUT_VIDEOS_DIR).glob("*.mp4"))
total = len(videos) * len(trajectories)
idx = 0
for video_path in videos:
video_name = video_path.stem
for traj_name, params in trajectories.items():
idx += 1
logs += f"\n---\nRunning {video_name}/{traj_name} ({idx}/{total})\n"
out_dir = Path(FINAL_RESULTS_DIR) / video_name / traj_name
out_dir.mkdir(parents=True, exist_ok=True)
anchor_path, logs1, caption, depth_path = get_anchor_video(
video_path=str(video_path),
fps=params.get("fps",24),
num_frames=params.get("num_frames",49),
target_pose=params["target_pose"],
mode=params.get("mode", "gradual"),
radius_scale=params.get("radius_scale", 1.0),
near_far_estimated=params.get("near_far_estimated", True),
sampler_name=params.get("sampler_name", "DDIM_Origin"),
diffusion_guidance_scale=params.get("diff_guidance", 6.0),
diffusion_inference_steps=params.get("diff_steps", 50),
prompt=params.get("prompt", ""),
negative_prompt=params.get("neg_prompt", ""),
refine_prompt=params.get("refine_prompt", ""),
depth_inference_steps=params.get("depth_steps", 5),
depth_guidance_scale=params.get("depth_guidance", 1.0),
window_size=params.get("window_size", 64),
overlap=params.get("overlap", 25),
max_res=params.get("max_res", 720),
sample_size=params.get("sample_size", "384, 672"),
seed_input=params.get("seed", 43),
height=params.get("height", 480),
width=params.get("width", 720),
aspect_ratio_inputs=params.get("aspect_ratio", "3,4"),
init_dx=params.get("init_dx", 0.0),
init_dy=params.get("init_dy", 0.0),
init_dz=params.get("init_dz", 0.0)
)
if not anchor_path:
logs += f"β Failed: {video_name}/{traj_name}\n"
continue
shutil.copy(anchor_path, out_dir / "anchor_video.mp4")
shutil.copy(depth_path, out_dir / "depth.mp4")
with open(out_dir / "captions.txt", "w") as f:
f.write(caption or "")
with open(out_dir / "step1_logs.txt", "w") as f:
f.write(logs1 or "")
final_video, logs2 = inference(
fps=params.get("fps", 24),
num_frames=params.get("num_frames", 49),
controlnet_weights=params.get("controlnet_weights", 0.5),
controlnet_guidance_start=params.get("controlnet_guidance_start", 0.0),
controlnet_guidance_end=params.get("controlnet_guidance_end", 0.5),
guidance_scale=params.get("guidance_scale", 6.0),
num_inference_steps=params.get("inference_steps", 50),
dtype=params.get("dtype", "bfloat16"),
seed=params.get("seed2", 42),
height=params.get("height", 480),
width=params.get("width", 720),
downscale_coef=params.get("downscale_coef", 8),
vae_channels=params.get("vae_channels", 16),
controlnet_input_channels=params.get("controlnet_input_channels", 6),
controlnet_transformer_num_layers=params.get("controlnet_transformer_layers", 8)
)
if final_video:
shutil.copy(final_video, out_dir / "final_video.mp4")
with open(out_dir / "step2_logs.txt", "w") as f:
f.write(logs2 or "")
progress(idx / total)
zip_path = FINAL_RESULTS_DIR + ".zip"
zip_dir(FINAL_RESULTS_DIR, zip_path)
return logs, zip_path
# -----------------------------
# Gradio Interface
# -----------------------------
with gr.Blocks() as demo:
gr.Markdown("## π EPiC Pipeline: Upload Inputs + Run Inference")
with gr.Tab("π€ Upload Files"):
with gr.Row():
zip_input = gr.File(label="Upload Folder (.zip)", file_types=[".zip"])
config_input = gr.File(label="Upload config.yaml", file_types=[".yaml", ".yml"])
upload_btn = gr.Button("Upload & Extract")
upload_output = gr.Textbox(label="Upload Result", lines=10)
upload_btn.click(handle_uploads, inputs=[zip_input, config_input], outputs=upload_output)
with gr.Tab("π Run Experiments"):
with gr.Row():
run_batch_btn = gr.Button("βΆοΈ Run Batch Experiments")
download_btn = gr.Button("β¬οΈ Download Results")
batch_logs = gr.Textbox(label="Logs", lines=25)
zip_file_output = gr.File(label="Final ZIP", visible=True)
run_batch_btn.click(run_batch_process, outputs=[batch_logs, zip_file_output])
download_btn.click(lambda: FINAL_RESULTS_DIR + ".zip", outputs=zip_file_output)
if __name__ == "__main__":
download_models()
demo.launch(server_name="0.0.0.0", server_port=7860)
|