File size: 8,384 Bytes
9e96e5e
 
 
 
 
 
 
 
 
 
 
3d7d9a4
9e96e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c64b6a
 
 
 
0c89006
6c64b6a
 
 
0c89006
 
 
6c64b6a
0c89006
6c64b6a
 
 
 
 
 
 
 
 
9e96e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c64b6a
9e96e5e
6c64b6a
9e96e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
927536c
 
9e96e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a2fda1
c2771c3
9e96e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c64b6a
 
9e96e5e
6c64b6a
 
 
 
 
 
 
9e96e5e
6c64b6a
9e96e5e
 
 
 
 
6c64b6a
 
9e96e5e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import torch
import cv2
import yaml
import shutil
import zipfile
import subprocess
import gradio as gr
import numpy as np
from pathlib import Path
from huggingface_hub import hf_hub_download
from gradio_app import get_anchor_video, inference

# -----------------------------
# Environment Setup
# -----------------------------
HF_HOME = "/app/hf_cache"
os.environ["HF_HOME"] = HF_HOME
os.environ["TRANSFORMERS_CACHE"] = HF_HOME
os.makedirs(HF_HOME, exist_ok=True)

PRETRAINED_DIR = "/app/pretrained"
os.makedirs(PRETRAINED_DIR, exist_ok=True)

INPUT_VIDEOS_DIR = "Input_Videos"
CONFIG_FILE = "config.yaml"
FINAL_RESULTS_DIR = "Final_results"

# -----------------------------
# File Upload Handler
# -----------------------------
def handle_uploads(zip_file, config_file):
    # Extract zip
    with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
        zip_ref.extractall(".")

    # Write the config file (already a string)
    with open(CONFIG_FILE, "w", encoding="utf-8") as f:
        f.write(config_file)

    # List files
    extracted_files = list(Path(".").rglob("*"))
    summary = "\n".join(str(f.relative_to(Path("."))) for f in extracted_files if f.is_file())

    return f"""βœ… Upload Successful!
πŸ“ Extracted Files:
{summary}
πŸ“ Config file saved to: `{CONFIG_FILE}`
"""

# -----------------------------
# Utility Functions
# -----------------------------
def download_models():
    expected_model = os.path.join(PRETRAINED_DIR, "RAFT/raft-things.pth")
    if not Path(expected_model).exists():
        print("\u2699\ufe0f Downloading pretrained models...")
        try:
            subprocess.check_call(["bash", "download/download_models.sh"])
            print("\u2705 Models downloaded.")
        except subprocess.CalledProcessError as e:
            print(f"Model download failed: {e}")
    else:
        print("\u2705 Pretrained models already exist.")

def visualize_depth_npy_as_video(npy_file, fps):
    depth_np = np.load(npy_file)
    tensor = torch.from_numpy(depth_np)
    T, _, H, W = tensor.shape

    video_path = "/app/depth_video_preview.mp4"
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(video_path, fourcc, fps, (W, H))

    for i in range(T):
        frame = tensor[i, 0].numpy()
        norm = (frame - frame.min()) / (frame.max() - frame.min() + 1e-8)
        frame_uint8 = (norm * 255).astype(np.uint8)
        colored = cv2.applyColorMap(frame_uint8, cv2.COLORMAP_INFERNO)
        out.write(colored)

    out.release()
    return video_path

def zip_dir(dir_path, zip_path):
    with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zf:
        for root, _, files in os.walk(dir_path):
            for file in files:
                full_path = os.path.join(root, file)
                rel_path = os.path.relpath(full_path, dir_path)
                zf.write(full_path, rel_path)

# -----------------------------
# Inference Functions
# -----------------------------
from gradio_app import get_anchor_video, inference  # Replace with real implementation

def run_batch_process(progress=gr.Progress()):
    with open(CONFIG_FILE, 'r') as f:
        trajectories = yaml.safe_load(f)

    os.makedirs(FINAL_RESULTS_DIR, exist_ok=True)
    logs = ""
    videos = list(Path(INPUT_VIDEOS_DIR).glob("*.mp4"))
    total = len(videos) * len(trajectories)
    idx = 0

    for video_path in videos:
        video_name = video_path.stem

        for traj_name, params in trajectories.items():
            idx += 1
            logs += f"\n---\nRunning {video_name}/{traj_name} ({idx}/{total})\n"

            out_dir = Path(FINAL_RESULTS_DIR) / video_name / traj_name
            out_dir.mkdir(parents=True, exist_ok=True)

            anchor_path, logs1, caption, depth_path = get_anchor_video(
                video_path=str(video_path),
                fps=params.get("fps",24),
                num_frames=params.get("num_frames",49),
                target_pose=params["target_pose"],
                mode=params.get("mode", "gradual"),
                radius_scale=params.get("radius_scale", 1.0),
                near_far_estimated=params.get("near_far_estimated", True),
                sampler_name=params.get("sampler_name", "DDIM_Origin"),
                diffusion_guidance_scale=params.get("diff_guidance", 6.0),
                diffusion_inference_steps=params.get("diff_steps", 50),
                prompt=params.get("prompt", ""),
                negative_prompt=params.get("neg_prompt", ""),
                refine_prompt=params.get("refine_prompt", ""),
                depth_inference_steps=params.get("depth_steps", 5),
                depth_guidance_scale=params.get("depth_guidance", 1.0),
                window_size=params.get("window_size", 64),
                overlap=params.get("overlap", 25),
                max_res=params.get("max_res", 720),
                sample_size=params.get("sample_size", "384, 672"),
                seed_input=params.get("seed", 43),
                height=params.get("height", 480),
                width=params.get("width", 720),
                aspect_ratio_inputs=params.get("aspect_ratio", "3,4"),
                init_dx=params.get("init_dx", 0.0),
                init_dy=params.get("init_dy", 0.0),
                init_dz=params.get("init_dz", 0.0)
            )

            if not anchor_path:
                logs += f"❌ Failed: {video_name}/{traj_name}\n"
                continue

            shutil.copy(anchor_path, out_dir / "anchor_video.mp4")
            shutil.copy(depth_path, out_dir / "depth.mp4")
            with open(out_dir / "captions.txt", "w") as f:
                f.write(caption or "")
            with open(out_dir / "step1_logs.txt", "w") as f:
                f.write(logs1 or "")

            final_video, logs2 = inference(
                fps=params.get("fps", 24),
                num_frames=params.get("num_frames", 49),
                controlnet_weights=params.get("controlnet_weights", 0.5),
                controlnet_guidance_start=params.get("controlnet_guidance_start", 0.0),
                controlnet_guidance_end=params.get("controlnet_guidance_end", 0.5),
                guidance_scale=params.get("guidance_scale", 6.0),
                num_inference_steps=params.get("inference_steps", 50),
                dtype=params.get("dtype", "bfloat16"),
                seed=params.get("seed2", 42),
                height=params.get("height", 480),
                width=params.get("width", 720),
                downscale_coef=params.get("downscale_coef", 8),
                vae_channels=params.get("vae_channels", 16),
                controlnet_input_channels=params.get("controlnet_input_channels", 6),
                controlnet_transformer_num_layers=params.get("controlnet_transformer_layers", 8)
            )

            if final_video:
                shutil.copy(final_video, out_dir / "final_video.mp4")
            with open(out_dir / "step2_logs.txt", "w") as f:
                f.write(logs2 or "")

            progress(idx / total)

    zip_path = FINAL_RESULTS_DIR + ".zip"
    zip_dir(FINAL_RESULTS_DIR, zip_path)
    return logs, zip_path

# -----------------------------
# Gradio Interface
# -----------------------------
with gr.Blocks() as demo:
    gr.Markdown("## πŸš€ EPiC Pipeline: Upload Inputs + Run Inference")

    with gr.Tab("πŸ“€ Upload Files"):
        with gr.Row():
            zip_input = gr.File(label="Upload Folder (.zip)", file_types=[".zip"])
            config_input = gr.File(label="Upload config.yaml", file_types=[".yaml", ".yml"])
        upload_btn = gr.Button("Upload & Extract")
        upload_output = gr.Textbox(label="Upload Result", lines=10)
        upload_btn.click(handle_uploads, inputs=[zip_input, config_input], outputs=upload_output)

    with gr.Tab("πŸ“ Run Experiments"):
        with gr.Row():
            run_batch_btn = gr.Button("▢️ Run Batch Experiments")
            download_btn = gr.Button("⬇️ Download Results")
        batch_logs = gr.Textbox(label="Logs", lines=25)
        zip_file_output = gr.File(label="Final ZIP", visible=True)
        run_batch_btn.click(run_batch_process, outputs=[batch_logs, zip_file_output])
        download_btn.click(lambda: FINAL_RESULTS_DIR + ".zip", outputs=zip_file_output)

if __name__ == "__main__":
    download_models()
    demo.launch(server_name="0.0.0.0", server_port=7860)