romarakov's picture
Update app.py
f688de0 verified
import os
import json
import torch
import timm
import numpy as np
import gradio as gr
from PIL import Image, ImageDraw
import cv2
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from io import BytesIO
import base64
import torchvision
import torch.nn as nn
import torchvision.models as models
from torchvision import transforms
from torchvision.models.detection import fasterrcnn_resnet50_fpn
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from torchvision.transforms import functional as F
from torch.nn.functional import interpolate
import segmentation_models_pytorch as smp
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
device = torch.device("cpu")
# ResNet18Classifier definition - just in case I decide to use it
class ResNet18Classifier(nn.Module):
def __init__(self, num_classes=10):
super().__init__()
self.model = models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
in_features = self.model.fc.in_features
self.model.fc = nn.Linear(in_features, num_classes)
def forward(self, x):
return self.model(x)
# For classification
class_names = {
0: 'Casual dresses',
1: 'Evening dresses',
2: 'Jersey dresses',
3: 'Knitted dresses',
4: 'Maxi dresses',
5: 'Midi dresses',
6: 'Mini dresses',
7: 'Occasion dresses',
8: 'Shirt dresses',
9: 'Skater dresses'
}
# Global models - will be loaded once
detection_model, segmentation_model, classification_model, gradcam = (None,) * 4
def load_models():
global detection_model, segmentation_model, classification_model, gradcam
try:
print("Loading human detection model...")
detection_model = fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.COCO_V1)
detection_model.to(device)
detection_model.eval()
print("โœ“ Detection model loaded")
print("Loading segmentation model...")
segmentation_model = smp.Unet(
encoder_name="resnet34",
encoder_weights="imagenet",
in_channels=3,
classes=1,
activation=None
).to(device)
if os.path.exists('best_model.pth'):
segmentation_model.load_state_dict(torch.load('best_model.pth', map_location=device))
print("โœ“ Loaded custom segmentation weights")
else:
print("โš ๏ธ Using ImageNet pre-trained weights for segmentation (custom weights not found)")
segmentation_model.eval()
print("โœ“ Segmentation model loaded")
# --- Classification model: ResNet18Classifier ---
print("Loading ResNet18 or ConvNext V2 classification model...")
# classification_model = ResNet18Classifier(num_classes=10)
# classification_model = ResNet18Classifier(num_classes=10)
# model_path_class_model = "class_model.pth"
# if os.path.exists(model_path_class_model):
# try:
# state_dict = torch.load(model_path_class_model, map_location=torch.device('cpu'))
# new_state_dict = {}
# for key, value in state_dict.items():
# new_key = f"model.{key}"
# new_state_dict[new_key] = value
# classification_model.load_state_dict(new_state_dict)
# print("โœ… ResNet18 classification model weights loaded")
# except Exception as e:
# print(f"โš ๏ธ Error loading ResNet18 classification weights: {e}")
# else:
# print("โš ๏ธ ResNet18 classification model weights not found, using pretrained initialization")
# classification_model = classification_model.to(device)
# classification_model.eval()
# Alternatively: load the more heavier one
classification_model = timm.create_model('convnextv2_base', pretrained=False)
classification_model.reset_classifier(num_classes=10)
classification_model.load_state_dict(torch.load("ConvNeXt.pth", map_location=torch.device('cpu')))
classification_model = classification_model.to(device)
classification_model.eval()
print("โœ“ ResNet18 (or ConvNext V2) classification model loaded")
print("Setting up Grad-CAM for the classification model...")
target_layer = [m for m in classification_model.modules() if isinstance(m, torch.nn.Conv2d)][-1]
gradcam = GradCAM(model=classification_model, target_layers=[target_layer])
print("โœ“ Grad-CAM initialized")
print("๐ŸŽ‰ All models loaded successfully!")
except Exception as e:
print(f"โŒ Error loading models: {e}")
raise e
def detect_human_boxes(image):
"""Detect human bounding boxes using Faster R-CNN"""
image_tensor = F.to_tensor(image).unsqueeze(0).to(device)
width, height = image.size
with torch.no_grad():
output = detection_model(image_tensor)[0]
person_indices = [
i for i, label in enumerate(output['labels'])
if label == 1 and output['scores'][i] > 0.5
]
if not person_indices:
return None, None
top_idx = max(person_indices, key=lambda i: output['scores'][i])
box = output['boxes'][top_idx].cpu().tolist()
score = output['scores'][top_idx].item()
x1 = max(0, min(box[0], width))
y1 = max(0, min(box[1], height))
x2 = max(0, min(box[2], width))
y2 = max(0, min(box[3], height))
return [x1, y1, x2, y2], score
def preprocess_for_classification(image, mask, target_size=224):
"""Preprocess masked image for classification"""
image_np = np.array(image) / 255.0 if not isinstance(image, torch.Tensor) else image.permute(1, 2, 0).cpu().numpy()
mask_np = np.array(mask) if not isinstance(mask, torch.Tensor) else mask.cpu().numpy()
if len(mask_np.shape) == 2:
mask_np = mask_np[:, :, np.newaxis]
masked_image = image_np * mask_np
pil_img = Image.fromarray((masked_image * 255).astype(np.uint8))
width, height = pil_img.size
ratio = min(target_size / width, target_size / height)
new_size = (int(width * ratio), int(height * ratio))
resized_img = pil_img.resize(new_size, Image.BILINEAR)
result = Image.new("RGB", (target_size, target_size), color=(123, 117, 104))
result.paste(resized_img, ((target_size - new_size[0]) // 2, (target_size - new_size[1]) // 2))
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
return transform(result)
def process_image_pipeline(input_image):
"""Complete pipeline for processing an uploaded image"""
try:
if input_image is None:
return None, None, "Please upload an image", None
image = Image.fromarray(input_image).convert("RGB") if isinstance(input_image, np.ndarray) else input_image.convert("RGB")
bbox, confidence = detect_human_boxes(image)
if bbox is None:
return image, None, "No human detected in the image", None
image_with_box = image.copy()
draw = ImageDraw.Draw(image_with_box)
draw.rectangle(bbox, outline="red", width=8)
draw.text((bbox[0], bbox[1] - 20), f"Human: {confidence:.2f}", fill="red")
x1, y1, x2, y2 = bbox
cropped_image = image.crop((x1, y1, x2, y2))
cropped_resized = cropped_image.resize((256, 256))
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
input_tensor = transform(cropped_resized).unsqueeze(0).to(device)
with torch.no_grad():
segmentation_output = segmentation_model(input_tensor)
mask = (torch.sigmoid(segmentation_output) > 0.5).float()
mask_np = mask[0, 0].cpu().numpy()
mask_resized_original = cv2.resize(mask_np, (cropped_image.width, cropped_image.height))
mask_image = Image.fromarray((mask_resized_original * 255).astype(np.uint8)).convert("RGB")
processed_tensor = preprocess_for_classification(cropped_resized, mask_np).unsqueeze(0).to(device)
with torch.no_grad():
classification_output = classification_model(processed_tensor)
predicted_class = torch.argmax(classification_output, dim=1).item()
confidence_scores = torch.softmax(classification_output, dim=1)
max_confidence = confidence_scores[0, predicted_class].item()
predicted_category = f"{class_names[predicted_class]} (Confidence: {max_confidence:.2f})"
grayscale_cam = gradcam(input_tensor=processed_tensor, targets=[ClassifierOutputTarget(predicted_class)])[0]
mask_for_gradcam = cv2.resize(mask_np.astype(np.float32), grayscale_cam.shape[::-1])
grayscale_cam *= mask_for_gradcam
grayscale_cam = (grayscale_cam - grayscale_cam.min()) / (grayscale_cam.max() - grayscale_cam.min() + 1e-8)
cropped_np_original = np.array(cropped_image) / 255.0
mask_for_original = cv2.resize(mask_np.astype(np.float32), (cropped_image.width, cropped_image.height))
masked_image_np_original = cropped_np_original * mask_for_original[:, :, np.newaxis]
gradcam_resized_original = cv2.resize(grayscale_cam, (cropped_image.width, cropped_image.height))
heatmap_on_image = show_cam_on_image(
masked_image_np_original,
gradcam_resized_original,
use_rgb=True,
image_weight=0.6
)
heatmap_image = Image.fromarray(heatmap_on_image)
return image_with_box, mask_image, heatmap_image, predicted_category
except Exception as e:
return None, None, f"Error processing image: {str(e)}", None
def create_interface():
"""Create Gradio interface"""
with gr.Blocks(title="Dress Analysis Pipeline (DL Assignment 3)", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
## Dress Analysis Pipeline (DL Assignment 3)
### Author: Roman Rakov, University of Tรผbingen
Upload an image to run it through the pipeline:
1. **Human Detection** โ€“ Bounding box around detected person (*Faster R-CNN with ResNet-50 backbone*)
2. **Dress Segmentation** โ€“ Extracted dress/clothing region (*U-Net with ResNet-34 encoder*)
3. **Grad-CAM Heatmap** โ€“ Model attention visualization (*Grad-CAM for attention visualization*)
4. **Classification** โ€“ Predicted clothing category (*ConvNeXt v2 Base*)
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Upload Image", type="pil", height=500)
analyze_btn = gr.Button("Analyze Image", variant="primary", size="lg")
gr.Markdown("### Some (well-behaved) example images to start with..")
example_images = []
for i in range(1, 11):
example_path = f"examples/example{i}.jpg"
if os.path.exists(example_path):
example_images.append([example_path])
if example_images:
gr.Examples(examples=example_images, inputs=input_image)
else:
gr.Markdown("*No example images found.*")
with gr.Column(scale=2):
with gr.Row():
output_detection = gr.Image(label="Human Detection", height=500)
output_segmentation = gr.Image(label="Dress Segmentation", height=500)
with gr.Row():
output_gradcam = gr.Image(label="Grad-CAM Heatmap", height=500)
output_classification = gr.Textbox(label="Predicted Category", lines=2, max_lines=3, scale=1)
analyze_btn.click(
fn=process_image_pipeline,
inputs=[input_image],
outputs=[output_detection, output_segmentation, output_gradcam, output_classification]
)
input_image.change(
fn=process_image_pipeline,
inputs=[input_image],
outputs=[output_detection, output_segmentation, output_gradcam, output_classification]
)
return demo
# Load models when the app starts
print("Loading models...")
load_models()
# Create and launch the interface
if __name__ == "__main__":
demo = create_interface()
demo.launch()