Spaces:
Sleeping
Sleeping
Actual latest data refresh and clickable link
Browse files
app.py
CHANGED
|
@@ -60,10 +60,10 @@ def get_description_text():
|
|
| 60 |
"NVIDIA runs on A10",
|
| 61 |
]
|
| 62 |
msg = ["**" + x + "**" for x in msg] + [""]
|
| 63 |
-
if Ci_results.
|
| 64 |
-
msg.append(f"*Result overview by
|
| 65 |
else:
|
| 66 |
-
msg.append("*Result overview by
|
| 67 |
return "<br>".join(msg)
|
| 68 |
|
| 69 |
# Load CSS from external file
|
|
|
|
| 60 |
"NVIDIA runs on A10",
|
| 61 |
]
|
| 62 |
msg = ["**" + x + "**" for x in msg] + [""]
|
| 63 |
+
if Ci_results.latest_update_msg:
|
| 64 |
+
msg.append(f"*Result overview by hardware for important models ({Ci_results.latest_update_msg})*")
|
| 65 |
else:
|
| 66 |
+
msg.append("*Result overview by hardware for important models (loading...)*")
|
| 67 |
return "<br>".join(msg)
|
| 68 |
|
| 69 |
# Load CSS from external file
|
data.py
CHANGED
|
@@ -5,6 +5,7 @@ from datetime import datetime
|
|
| 5 |
import threading
|
| 6 |
import traceback
|
| 7 |
import json
|
|
|
|
| 8 |
|
| 9 |
# NOTE: if caching is an issue, try adding `use_listings_cache=False`
|
| 10 |
fs = HfFileSystem()
|
|
@@ -49,27 +50,69 @@ KEYS_TO_KEEP = [
|
|
| 49 |
"job_link_nvidia",
|
| 50 |
]
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
df = pd.read_json(json_path, orient="index")
|
| 55 |
df.index.name = "model_name"
|
| 56 |
df[f"failed_multi_no_{device_label}"] = df["failures"].apply(lambda x: len(x["multi"]) if "multi" in x else 0)
|
| 57 |
df[f"failed_single_no_{device_label}"] = df["failures"].apply(lambda x: len(x["single"]) if "single" in x else 0)
|
| 58 |
-
return df
|
| 59 |
|
| 60 |
-
def get_distant_data() -> pd.DataFrame:
|
| 61 |
# Retrieve AMD dataframe
|
| 62 |
amd_src = "hf://datasets/optimum-amd/transformers_daily_ci/**/runs/**/ci_results_run_models_gpu/model_results.json"
|
| 63 |
files_amd = sorted(fs.glob(amd_src, refresh=True), reverse=True)
|
| 64 |
-
df_amd = read_one_dataframe(f"hf://{files_amd[0]}", "amd")
|
| 65 |
# Retrieve NVIDIA dataframe, which pattern should be:
|
| 66 |
-
# hf://datasets/hf-internal-testing
|
| 67 |
nvidia_src = "hf://datasets/hf-internal-testing/transformers_daily_ci/*/ci_results_run_models_gpu/model_results.json"
|
| 68 |
files_nvidia = sorted(fs.glob(nvidia_src, refresh=True), reverse=True)
|
| 69 |
# NOTE: should this be removeprefix instead of lstrip?
|
| 70 |
nvidia_path = files_nvidia[0].lstrip('datasets/hf-internal-testing/transformers_daily_ci/')
|
| 71 |
nvidia_path = "https://huggingface.co/datasets/hf-internal-testing/transformers_daily_ci/raw/main/" + nvidia_path
|
| 72 |
-
df_nvidia = read_one_dataframe(nvidia_path, "nvidia")
|
|
|
|
|
|
|
| 73 |
# Join both dataframes
|
| 74 |
joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
|
| 75 |
joined = joined[KEYS_TO_KEEP]
|
|
@@ -81,7 +124,7 @@ def get_distant_data() -> pd.DataFrame:
|
|
| 81 |
for model in IMPORTANT_MODELS:
|
| 82 |
if model not in filtered_joined.index:
|
| 83 |
print(f"[WARNING] Model {model} was missing from index.")
|
| 84 |
-
return filtered_joined
|
| 85 |
|
| 86 |
|
| 87 |
def get_sample_data() -> pd.DataFrame:
|
|
@@ -140,14 +183,15 @@ class CIResults:
|
|
| 140 |
def __init__(self):
|
| 141 |
self.df = pd.DataFrame()
|
| 142 |
self.available_models = []
|
| 143 |
-
self.
|
| 144 |
|
| 145 |
def load_data(self) -> None:
|
| 146 |
"""Load data from the data source."""
|
| 147 |
# Try loading the distant data, and fall back on sample data for local tinkering
|
| 148 |
try:
|
| 149 |
logger.info("Loading distant data...")
|
| 150 |
-
new_df = get_distant_data()
|
|
|
|
| 151 |
except Exception as e:
|
| 152 |
error_msg = [
|
| 153 |
"Loading data failed:",
|
|
@@ -161,11 +205,10 @@ class CIResults:
|
|
| 161 |
# Update attributes
|
| 162 |
self.df = new_df
|
| 163 |
self.available_models = new_df.index.tolist()
|
| 164 |
-
self.last_update_time = datetime.now().strftime('%H:%M')
|
| 165 |
# Log and return distant load status
|
| 166 |
logger.info(f"Data loaded successfully: {len(self.available_models)} models")
|
| 167 |
logger.info(f"Models: {self.available_models[:5]}{'...' if len(self.available_models) > 5 else ''}")
|
| 168 |
-
logger.info(f"
|
| 169 |
# Log a preview of the df
|
| 170 |
msg = {}
|
| 171 |
for model in self.available_models[:3]:
|
|
|
|
| 5 |
import threading
|
| 6 |
import traceback
|
| 7 |
import json
|
| 8 |
+
import re
|
| 9 |
|
| 10 |
# NOTE: if caching is an issue, try adding `use_listings_cache=False`
|
| 11 |
fs = HfFileSystem()
|
|
|
|
| 50 |
"job_link_nvidia",
|
| 51 |
]
|
| 52 |
|
| 53 |
+
|
| 54 |
+
def log_dataframe_link(link: str) -> str:
|
| 55 |
+
"""
|
| 56 |
+
Adds the link to the dataset in the logs, modifies it to get a clockable link and then returns the date of the
|
| 57 |
+
report.
|
| 58 |
+
"""
|
| 59 |
+
logger.info(f"Reading df located at {link}")
|
| 60 |
+
# Make sure the links starts with an http adress
|
| 61 |
+
if link.startswith("hf://"):
|
| 62 |
+
link = "https://huggingface.co/" + link.removeprefix("hf://")
|
| 63 |
+
# Pattern to match transformers_daily_ci followed by any path, then a date (YYYY-MM-DD format)
|
| 64 |
+
pattern = r'transformers_daily_ci(.*?)/(\d{4}-\d{2}-\d{2})'
|
| 65 |
+
match = re.search(pattern, link)
|
| 66 |
+
# Failure case:
|
| 67 |
+
if not match:
|
| 68 |
+
logger.error("Could not find transformers_daily_ci and.or date in the link")
|
| 69 |
+
return "9999-99-99"
|
| 70 |
+
# Replace the path between with blob/main
|
| 71 |
+
path_between = match.group(1)
|
| 72 |
+
link = link.replace("transformers_daily_ci" + path_between, "transformers_daily_ci/blob/main")
|
| 73 |
+
logger.info(f"Link to data source: {link}")
|
| 74 |
+
# Return the date
|
| 75 |
+
return match.group(2)
|
| 76 |
+
|
| 77 |
+
def infer_latest_update_msg(date_df_amd: str, date_df_nvidia: str) -> str:
|
| 78 |
+
# Early return if one of the dates is invalid
|
| 79 |
+
if date_df_amd.startswith("9999") and date_df_nvidia.startswith("9999"):
|
| 80 |
+
return "could not find last update time"
|
| 81 |
+
# Warn if dates are not the same
|
| 82 |
+
if date_df_amd != date_df_nvidia:
|
| 83 |
+
logger.warning(f"Different dates found: {date_df_amd} (AMD) vs {date_df_nvidia} (NVIDIA)")
|
| 84 |
+
# Take the latest date and format it
|
| 85 |
+
try:
|
| 86 |
+
latest_date = max(date_df_amd, date_df_nvidia)
|
| 87 |
+
yyyy, mm, dd = latest_date.split("-")
|
| 88 |
+
return f"last updated {mm}/{dd}/{yyyy}"
|
| 89 |
+
except Exception as e:
|
| 90 |
+
logger.error(f"When trying to infer latest date, got error {e}")
|
| 91 |
+
return "could not find last update time"
|
| 92 |
+
|
| 93 |
+
def read_one_dataframe(json_path: str, device_label: str) -> tuple[pd.DataFrame, str]:
|
| 94 |
+
df_upload_date = log_dataframe_link(json_path)
|
| 95 |
df = pd.read_json(json_path, orient="index")
|
| 96 |
df.index.name = "model_name"
|
| 97 |
df[f"failed_multi_no_{device_label}"] = df["failures"].apply(lambda x: len(x["multi"]) if "multi" in x else 0)
|
| 98 |
df[f"failed_single_no_{device_label}"] = df["failures"].apply(lambda x: len(x["single"]) if "single" in x else 0)
|
| 99 |
+
return df, df_upload_date
|
| 100 |
|
| 101 |
+
def get_distant_data() -> tuple[pd.DataFrame, str]:
|
| 102 |
# Retrieve AMD dataframe
|
| 103 |
amd_src = "hf://datasets/optimum-amd/transformers_daily_ci/**/runs/**/ci_results_run_models_gpu/model_results.json"
|
| 104 |
files_amd = sorted(fs.glob(amd_src, refresh=True), reverse=True)
|
| 105 |
+
df_amd, date_df_amd = read_one_dataframe(f"hf://{files_amd[0]}", "amd")
|
| 106 |
# Retrieve NVIDIA dataframe, which pattern should be:
|
| 107 |
+
# hf://datasets/hf-internal-testing`/transformers_daily_ci/raw/main/YYYY-MM-DD/ci_results_run_models_gpu/model_results.json
|
| 108 |
nvidia_src = "hf://datasets/hf-internal-testing/transformers_daily_ci/*/ci_results_run_models_gpu/model_results.json"
|
| 109 |
files_nvidia = sorted(fs.glob(nvidia_src, refresh=True), reverse=True)
|
| 110 |
# NOTE: should this be removeprefix instead of lstrip?
|
| 111 |
nvidia_path = files_nvidia[0].lstrip('datasets/hf-internal-testing/transformers_daily_ci/')
|
| 112 |
nvidia_path = "https://huggingface.co/datasets/hf-internal-testing/transformers_daily_ci/raw/main/" + nvidia_path
|
| 113 |
+
df_nvidia, date_df_nvidia = read_one_dataframe(nvidia_path, "nvidia")
|
| 114 |
+
# Infer and format the latest df date
|
| 115 |
+
latest_update_msg = infer_latest_update_msg(date_df_amd, date_df_nvidia)
|
| 116 |
# Join both dataframes
|
| 117 |
joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
|
| 118 |
joined = joined[KEYS_TO_KEEP]
|
|
|
|
| 124 |
for model in IMPORTANT_MODELS:
|
| 125 |
if model not in filtered_joined.index:
|
| 126 |
print(f"[WARNING] Model {model} was missing from index.")
|
| 127 |
+
return filtered_joined, latest_update_msg
|
| 128 |
|
| 129 |
|
| 130 |
def get_sample_data() -> pd.DataFrame:
|
|
|
|
| 183 |
def __init__(self):
|
| 184 |
self.df = pd.DataFrame()
|
| 185 |
self.available_models = []
|
| 186 |
+
self.latest_update_msg = ""
|
| 187 |
|
| 188 |
def load_data(self) -> None:
|
| 189 |
"""Load data from the data source."""
|
| 190 |
# Try loading the distant data, and fall back on sample data for local tinkering
|
| 191 |
try:
|
| 192 |
logger.info("Loading distant data...")
|
| 193 |
+
new_df, latest_update_msg = get_distant_data()
|
| 194 |
+
self.latest_update_msg = latest_update_msg
|
| 195 |
except Exception as e:
|
| 196 |
error_msg = [
|
| 197 |
"Loading data failed:",
|
|
|
|
| 205 |
# Update attributes
|
| 206 |
self.df = new_df
|
| 207 |
self.available_models = new_df.index.tolist()
|
|
|
|
| 208 |
# Log and return distant load status
|
| 209 |
logger.info(f"Data loaded successfully: {len(self.available_models)} models")
|
| 210 |
logger.info(f"Models: {self.available_models[:5]}{'...' if len(self.available_models) > 5 else ''}")
|
| 211 |
+
logger.info(f"Latest update message: {self.latest_update_msg}")
|
| 212 |
# Log a preview of the df
|
| 213 |
msg = {}
|
| 214 |
for model in self.available_models[:3]:
|