File size: 11,710 Bytes
18b5cac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11fbe8b
18b5cac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11fbe8b
 
18b5cac
 
 
11fbe8b
18b5cac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11fbe8b
 
18b5cac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f1fc74
 
 
 
a8f834a
5f1fc74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
from diffusers import AutoencoderKLWan, WanPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
import random
import os

MODEL_ID = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors"

vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(
    MODEL_ID, vae=vae, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")

causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()

MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 384 # 512
DEFAULT_W_SLIDER_VALUE = 640 # 896

# Environment variable check
IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "False") == "True"

# Original limits
ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1280
ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1280
ORIGINAL_MAX_DURATION = round(81/24, 1)  # MAX_FRAMES_MODEL/FIXED_FPS

# Limited space constants
LIMITED_MAX_RESOLUTION = 640
LIMITED_MAX_DURATION = 2.0
LIMITED_MAX_STEPS = 4

# Set limits based on environment variable
if IS_ORIGINAL_SPACE:
    SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION
    SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION
    MAX_DURATION = LIMITED_MAX_DURATION
    MAX_STEPS = LIMITED_MAX_STEPS
else:
    SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H
    SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W
    MAX_DURATION = ORIGINAL_MAX_DURATION
    MAX_STEPS = 8

MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 24
FIXED_OUTPUT_FPS = 18 # we downspeed the output video as a temporary "trick"
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81 

default_prompt_t2v = "A wide aerial view of a bustling open-air street market in a densely built urban neighborhood, narrow lanes packed with colorful umbrellas and stalls, crowds of people walking, talking, and shopping, vibrant fabrics and goods displayed on tables, vendors gesturing to customers, children weaving through the crowd, occasional bicycles passing, the scene alive with constant movement and chatter, distant city skyline visible under a hazy sky, smooth cinematic camera pan across the lively street"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"

def get_duration(prompt, height, width, 
                   negative_prompt, duration_seconds,
                   guidance_scale, steps,
                   seed, randomize_seed, 
                   progress):
    if steps > 4 and duration_seconds > 2:
        return 90
    elif steps > 4 or duration_seconds > 2:
        return 75
    else:
        return 60

@spaces.GPU(duration=get_duration)
def generate_video(prompt, height, width, 
                   negative_prompt=default_negative_prompt, duration_seconds = 2,
                   guidance_scale = 1, steps = 4,
                   seed = 42, randomize_seed = False, 
                   progress=gr.Progress(track_tqdm=True)):
    """
    Generate a video from a text prompt using the Wan 2.1 T2V model with CausVid LoRA.
    
    This function takes a text prompt and generates a video based on the provided
    prompt and parameters. It uses the Wan 2.1 1.3B Text-to-Video model with CausVid LoRA
    for fast generation in 3-8 steps.
    
    Args:
        prompt (str): Text prompt describing the desired video content.
        height (int): Target height for the output video. Will be adjusted to multiple of MOD_VALUE (32).
        width (int): Target width for the output video. Will be adjusted to multiple of MOD_VALUE (32).
        negative_prompt (str, optional): Negative prompt to avoid unwanted elements. 
            Defaults to default_negative_prompt (contains unwanted visual artifacts).
        duration_seconds (float, optional): Duration of the generated video in seconds.
            Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
        guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
            Defaults to 1.0. Range: 0.0-20.0.
        steps (int, optional): Number of inference steps. More steps = higher quality but slower.
            Defaults to 4. Range: 1-30.
        seed (int, optional): Random seed for reproducible results. Defaults to 42.
            Range: 0 to MAX_SEED (2147483647).
        randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
            Defaults to False.
        progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
    
    Returns:
        tuple: A tuple containing:
            - video_path (str): Path to the generated video file (.mp4)
            - current_seed (int): The seed used for generation (useful when randomize_seed=True)
    
    Raises:
        gr.Error: If prompt is empty or None.
    
    Note:
        - Frame count is calculated as duration_seconds * FIXED_FPS (24)
        - Output dimensions are adjusted to be multiples of MOD_VALUE (32)
        - The function uses GPU acceleration via the @spaces.GPU decorator
        - Generation time varies based on steps and duration (see get_duration function)
    """
    if not prompt or prompt.strip() == "":
        raise gr.Error("Please enter a text prompt. Try to use long and precise descriptions.")

    # Apply limits based on environment variable
    if IS_ORIGINAL_SPACE:
        height = min(height, LIMITED_MAX_RESOLUTION)
        width = min(width, LIMITED_MAX_RESOLUTION)
        duration_seconds = min(duration_seconds, LIMITED_MAX_DURATION)
        steps = min(steps, LIMITED_MAX_STEPS)

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)

    with torch.inference_mode():
        output_frames_list = pipe(
            prompt=prompt, negative_prompt=negative_prompt,
            height=target_h, width=target_w, num_frames=num_frames,
            guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed)
        ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
    export_to_video(output_frames_list, video_path, fps=FIXED_OUTPUT_FPS)
    return video_path, current_seed

with gr.Blocks() as demo:
    gr.Markdown("# ⚡ DEval VideoGen")
    gr.Markdown("This Gradio space is a fork of [wan2-1-fast from jbilcke-hf](https://huggingface.co/spaces/jbilcke-hf/InstaVideo), and is powered by the Wan CausVid LoRA")

    # Add notice for limited spaces
    if IS_ORIGINAL_SPACE:
        gr.Markdown("⚠️ **Limit the resolution to 640px, duration to 2s, and inference steps to 4. For full capabilities please duplicate this space.**")
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v, placeholder="Describe the video you want to generate...")
            
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                with gr.Row():
                    height_input = gr.Slider(
                        minimum=SLIDER_MIN_H, 
                        maximum=SLIDER_MAX_H, 
                        step=MOD_VALUE, 
                        value=min(DEFAULT_H_SLIDER_VALUE, SLIDER_MAX_H), 
                        label=f"Output Height (multiple of {MOD_VALUE})"
                    )
                    width_input = gr.Slider(
                        minimum=SLIDER_MIN_W, 
                        maximum=SLIDER_MAX_W, 
                        step=MOD_VALUE, 
                        value=min(DEFAULT_W_SLIDER_VALUE, SLIDER_MAX_W), 
                        label=f"Output Width (multiple of {MOD_VALUE})"
                    )
                duration_seconds_input = gr.Slider(
                    minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), 
                    maximum=MAX_DURATION, 
                    step=0.1, 
                    value=2, 
                    label="Duration (seconds)", 
                    info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
                )
                steps_slider = gr.Slider(minimum=1, maximum=MAX_STEPS, step=1, value=4, label="Inference Steps") 
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)

            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
    
    ui_inputs = [
        prompt_input, height_input, width_input,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

    # Adjust examples based on space limits
    example_configs = [
        ["a majestic condor soaring through mountain peaks, cinematic aerial view", 896, 512],
        ["A wide aerial view of a bustling open-air street market in a densely built urban neighborhood, narrow lanes packed with colorful umbrellas and stalls, crowds of people walking, talking, and shopping, vibrant fabrics and goods displayed on tables, vendors gesturing to customers, children weaving through the crowd, occasional bicycles passing, the scene alive with constant movement and chatter, distant city skyline visible under a hazy sky, smooth cinematic camera pan across the lively street", 448, 832],
    ]
    
    if IS_ORIGINAL_SPACE:
        # Limit example resolutions for limited spaces
        example_configs = [
            [example[0], min(example[1], LIMITED_MAX_RESOLUTION), min(example[2], LIMITED_MAX_RESOLUTION)]
            for example in example_configs
        ]
    
    gr.Examples(
        examples=example_configs,
        inputs=[prompt_input, height_input, width_input], 
        outputs=[video_output, seed_input], 
        fn=generate_video, 
        cache_examples="lazy"
    )

if __name__ == "__main__":
    auth_user = os.getenv("USER")
    auth_pass = os.getenv("PASS")

    demo.queue().launch(
        auth=(auth_user, auth_pass), share=True,  ssr_mode=False
    )