Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,17 +2,38 @@ import gradio as gr
|
|
2 |
from fastapi import FastAPI, Request
|
3 |
import uvicorn
|
4 |
import spaces
|
|
|
|
|
|
|
|
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
8 |
@spaces.GPU
|
9 |
def embed(text):
|
10 |
-
|
|
|
11 |
|
12 |
@app.post("/v1/embeddings")
|
13 |
-
def openai_embed(req:Request):
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
with gr.Blocks() as demo:
|
|
|
2 |
from fastapi import FastAPI, Request
|
3 |
import uvicorn
|
4 |
import spaces
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
|
7 |
+
print("Loading embedding model");
|
8 |
+
Embedder = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
9 |
|
10 |
app = FastAPI()
|
11 |
|
12 |
@spaces.GPU
|
13 |
def embed(text):
|
14 |
+
query_embedding = Embedder.encode(text)
|
15 |
+
return query_embedding.tolist();
|
16 |
|
17 |
@app.post("/v1/embeddings")
|
18 |
+
async def openai_embed(req: Request):
|
19 |
+
body = await request.json();
|
20 |
+
print(body);
|
21 |
+
model = body['model'];
|
22 |
+
text = body['input'];
|
23 |
+
embeddings = embed(text)
|
24 |
+
return {
|
25 |
+
'object': "list"
|
26 |
+
,'data': [{
|
27 |
+
'object': "embeddings"
|
28 |
+
,'embedding': embeddings
|
29 |
+
,'index':0
|
30 |
+
}]
|
31 |
+
,'model': 'mixedbread-ai/mxbai-embed-large-v1'
|
32 |
+
,'usage':{
|
33 |
+
'prompt_tokens': 0
|
34 |
+
,'total_tokens': 0
|
35 |
+
}
|
36 |
+
}
|
37 |
|
38 |
|
39 |
with gr.Blocks() as demo:
|