rrg92 commited on
Commit
69c06d8
·
verified ·
1 Parent(s): 4cca681

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -85
app.py CHANGED
@@ -1,85 +1,26 @@
1
- import gradio as gr
2
- from fastapi import FastAPI, Request
3
- import uvicorn
4
- from sentence_transformers import SentenceTransformer
5
- from sentence_transformers.util import cos_sim
6
- from sentence_transformers.quantization import quantize_embeddings
7
-
8
-
9
- import spaces
10
-
11
-
12
-
13
- app = FastAPI()
14
-
15
-
16
- @spaces.GPU
17
- def embed(text):
18
- return [0,1]
19
- #query_embedding = Embedder.encode(text)
20
- #return query_embedding.tolist();
21
-
22
-
23
-
24
- @app.post("/v1/embeddings")
25
- async def openai_embeddings(request: Request):
26
- body = await request.json();
27
- print(body);
28
-
29
- model = body['model']
30
- text = body['input'];
31
- embeddings = embed(text)
32
- return {
33
- 'object': "list"
34
- ,'data': [{
35
- 'object': "embeddings"
36
- ,'embedding': embeddings
37
- ,'index':0
38
- }]
39
- ,'model':model
40
- ,'usage':{
41
- 'prompt_tokens': 0
42
- ,'total_tokens': 0
43
- }
44
- }
45
-
46
- def fn(text):
47
- return embed(text);
48
-
49
- with gr.Blocks(fill_height=True) as demo:
50
- text = gr.Textbox();
51
- embeddings = gr.Textbox()
52
-
53
- text.submit(fn, [text], [embeddings]);
54
-
55
-
56
- print("Loading embedding model");
57
- Embedder = None #SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
58
-
59
- # demo.run_startup_events()
60
-
61
-
62
- #demo.launch(
63
- # share=False,
64
- # debug=False,
65
- # server_port=7860,
66
- # server_name="0.0.0.0",
67
- # allowed_paths=[]
68
- #)
69
-
70
- print("Demo run...");
71
- (app2,url,other) = demo.launch(prevent_thread_lock=True, server_name=None, server_port=8000);
72
-
73
- print("Mounting app...");
74
- GradioApp = gr.mount_gradio_app(app, demo, path="/", ssr_mode=False);
75
-
76
-
77
- demo.close();
78
-
79
- if __name__ == '__main__':
80
- print("Running uviconr...");
81
- uvicorn.run(GradioApp, host="0.0.0.0", port=7860)
82
-
83
-
84
-
85
-
 
1
+ import gradio as gr
2
+ from fastapi import FastAPI, Request
3
+ import uvicorn
4
+ import spaces
5
+
6
+ app = FastAPI()
7
+
8
+ @spaces.GPU
9
+ def embed(text):
10
+ # my embedding logic here (e.g: sentence transformers)
11
+ pass
12
+
13
+ @app.post("/v1/embeddings")
14
+ def openai_embed(req:Request):
15
+ # some logic that will call embed
16
+ embed("some data from request")
17
+
18
+
19
+ with gr.Blocks() as demo:
20
+ text = gr.Textbox();
21
+ embeddings = gr.Textbox()
22
+
23
+ text.submit(embed, [text], [embeddings]);
24
+
25
+ GradioApp = gr.mount_gradio_app(app, demo, path="/");
26
+ uvicorn.run(GradioApp, port=7860, host="0.0.0.0")