Adjusts
Browse files- README.md +1 -1
- app.py +63 -38
- requirements.txt +2 -1
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 📉
|
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
pinned: false
|
| 9 |
app_port: 8080
|
| 10 |
---
|
|
|
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.32.1
|
| 8 |
pinned: false
|
| 9 |
app_port: 8080
|
| 10 |
---
|
app.py
CHANGED
|
@@ -4,31 +4,48 @@ import uvicorn
|
|
| 4 |
from sentence_transformers import SentenceTransformer
|
| 5 |
from sentence_transformers.util import cos_sim
|
| 6 |
from sentence_transformers.quantization import quantize_embeddings
|
| 7 |
-
|
| 8 |
-
|
| 9 |
import spaces
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
app = FastAPI()
|
| 14 |
|
| 15 |
|
| 16 |
-
@spaces.GPU
|
| 17 |
-
def embed(text):
|
| 18 |
-
return [0,1]
|
| 19 |
-
#query_embedding = Embedder.encode(text)
|
| 20 |
-
#return query_embedding.tolist();
|
| 21 |
-
|
| 22 |
-
|
| 23 |
|
| 24 |
@app.post("/v1/embeddings")
|
| 25 |
async def openai_embeddings(request: Request):
|
| 26 |
body = await request.json();
|
|
|
|
|
|
|
|
|
|
| 27 |
print(body);
|
| 28 |
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
text = body['input'];
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
return {
|
| 33 |
'object': "list"
|
| 34 |
,'data': [{
|
|
@@ -36,45 +53,53 @@ async def openai_embeddings(request: Request):
|
|
| 36 |
,'embedding': embeddings
|
| 37 |
,'index':0
|
| 38 |
}]
|
| 39 |
-
,'model':
|
| 40 |
,'usage':{
|
| 41 |
'prompt_tokens': 0
|
| 42 |
,'total_tokens': 0
|
| 43 |
}
|
| 44 |
}
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
with gr.Blocks(fill_height=True) as demo:
|
| 50 |
-
text = gr.Textbox();
|
| 51 |
-
embeddings = gr.Textbox()
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
print("Loading embedding model");
|
| 57 |
-
Embedder = None #SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
| 58 |
-
|
| 59 |
-
# demo.run_startup_events()
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
#demo.launch(
|
| 63 |
-
# share=False,
|
| 64 |
-
# debug=False,
|
| 65 |
-
# server_port=7860,
|
| 66 |
-
# server_name="0.0.0.0",
|
| 67 |
-
# allowed_paths=[]
|
| 68 |
-
#)
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
print("Mounting app...");
|
| 74 |
-
GradioApp = gr.mount_gradio_app(app, demo, path="
|
| 75 |
-
|
| 76 |
|
| 77 |
-
demo.close();
|
| 78 |
|
| 79 |
if __name__ == '__main__':
|
| 80 |
print("Running uviconr...");
|
|
|
|
| 4 |
from sentence_transformers import SentenceTransformer
|
| 5 |
from sentence_transformers.util import cos_sim
|
| 6 |
from sentence_transformers.quantization import quantize_embeddings
|
|
|
|
|
|
|
| 7 |
import spaces
|
| 8 |
+
from gradio_client import Client
|
| 9 |
+
import json
|
| 10 |
+
import os
|
| 11 |
|
| 12 |
|
| 13 |
app = FastAPI()
|
| 14 |
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
@app.post("/v1/embeddings")
|
| 18 |
async def openai_embeddings(request: Request):
|
| 19 |
body = await request.json();
|
| 20 |
+
token = request.headers.get("authorization");
|
| 21 |
+
apiName = body.get("ApiName");
|
| 22 |
+
|
| 23 |
print(body);
|
| 24 |
|
| 25 |
+
BearerToken = None;
|
| 26 |
+
if not token is None:
|
| 27 |
+
parts = token.split(' ');
|
| 28 |
+
BearerToken = parts[1];
|
| 29 |
+
print("Using token...");
|
| 30 |
+
|
| 31 |
+
SpacePath = body['model']
|
| 32 |
+
|
| 33 |
+
print("Creating client...");
|
| 34 |
+
SpaceClient = Client(SpacePath, hf_token = BearerToken)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
if not apiName:
|
| 38 |
+
apiName = "/embed"
|
| 39 |
+
|
| 40 |
text = body['input'];
|
| 41 |
+
|
| 42 |
+
result = SpaceClient.predict(
|
| 43 |
+
text=text,
|
| 44 |
+
api_name=apiName
|
| 45 |
+
)
|
| 46 |
+
embeddings = json.loads(result);
|
| 47 |
+
|
| 48 |
+
|
| 49 |
return {
|
| 50 |
'object': "list"
|
| 51 |
,'data': [{
|
|
|
|
| 53 |
,'embedding': embeddings
|
| 54 |
,'index':0
|
| 55 |
}]
|
| 56 |
+
,'model': SpacePath
|
| 57 |
,'usage':{
|
| 58 |
'prompt_tokens': 0
|
| 59 |
,'total_tokens': 0
|
| 60 |
}
|
| 61 |
}
|
| 62 |
+
|
| 63 |
+
SpaceHost = os.environ.get("SPACE_HOST");
|
| 64 |
|
| 65 |
+
if not SpaceHost:
|
| 66 |
+
SpaceHost = "localhost"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
with gr.Blocks() as demo:
|
| 69 |
+
gr.Markdown(f"""
|
| 70 |
+
This space allow you connect SQL Server 2025 with Hugging Face to generate embeddings!
|
| 71 |
+
First, create a ZeroGPU Space that export an endpoint called embed.
|
| 72 |
+
That endpoint must accept a parameter called text.
|
| 73 |
+
Then, create the external model using T-SQL:
|
| 74 |
+
|
| 75 |
+
```sql
|
| 76 |
+
CREATE EXTERNAL MODEL HuggingFace
|
| 77 |
+
WITH (
|
| 78 |
+
LOCATION = 'https://{SpaceHost}/v1/embeddings',
|
| 79 |
+
API_FORMAT = 'OpenAI',
|
| 80 |
+
MODEL_TYPE = EMBEDDINGS,
|
| 81 |
+
MODEL = 'user/space'
|
| 82 |
+
);
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
If you prefer, just type the space name into field bellow and we generate the right T-SQL command for you!
|
| 86 |
+
|
| 87 |
|
| 88 |
+
""")
|
| 89 |
+
|
| 90 |
+
SpaceName = gr.Textbox(label="Space")
|
| 91 |
+
EndpointName = gr.Textbox(value="/embed", label = "EndpointName");
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
|
| 95 |
+
## hack para funcionar com ZeroGPU nesse mesmo space
|
| 96 |
+
#print("Demo run...");
|
| 97 |
+
#(app2,url,other) = demo.launch(prevent_thread_lock=True, server_name=None, server_port=8000);
|
| 98 |
+
# demo.close
|
| 99 |
|
| 100 |
print("Mounting app...");
|
| 101 |
+
GradioApp = gr.mount_gradio_app(app, demo, path="", ssr_mode=False);
|
|
|
|
| 102 |
|
|
|
|
| 103 |
|
| 104 |
if __name__ == '__main__':
|
| 105 |
print("Running uviconr...");
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
fastapi
|
| 2 |
uvicorn
|
| 3 |
-
sentence_transformers
|
|
|
|
|
|
| 1 |
fastapi
|
| 2 |
uvicorn
|
| 3 |
+
sentence_transformers
|
| 4 |
+
gradio-client
|