File size: 6,101 Bytes
0855f92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c482cc
0855f92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c482cc
0855f92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python3
"""

Script to extract data from JSON files in a repository folder

and save it as a CSV file for import into the benchmark.

"""

import pandas as pd
import json
import os
import sys
import argparse
from pathlib import Path

def is_valid_json_file(file_path):
    """

    Check if a file is a valid JSON file containing a dict.

    

    Args:

        file_path (str): Path to the JSON file

        

    Returns:

        bool: True if valid JSON dict, False otherwise

    """
    try:
        with open(file_path, 'r', encoding='utf-8') as f:
            data = json.load(f)
        return isinstance(data, dict)
    except (json.JSONDecodeError, FileNotFoundError, UnicodeDecodeError):
        return False

def find_json_files(repo_path):
    """

    Recursively find all JSON files in the repository folder.

    

    Args:

        repo_path (str): Path to the repository folder

        

    Returns:

        list: List of paths to valid JSON files

    """
    json_files = []
    repo_path = Path(repo_path)
    
    if not repo_path.exists():
        print(f"Error: Repository path '{repo_path}' does not exist.")
        return []
    
    if not repo_path.is_dir():
        print(f"Error: Repository path '{repo_path}' is not a directory.")
        return []
    
    print(f"Scanning repository: {repo_path}")
    
    for file_path in repo_path.rglob("*.json"):
        if is_valid_json_file(file_path):
            json_files.append(file_path)
            print(f"Found valid JSON file: {file_path}")
    
    print(f"Total valid JSON files found: {len(json_files)}")
    return json_files

def extract_data_from_json(json_file_path):
    """

    Extract data from a single JSON file.

    

    Args:

        json_file_path (Path): Path to the JSON file

        

    Returns:

        dict or None: Extracted data or None if extraction failed

    """
    try:
        with open(json_file_path, 'r', encoding='utf-8') as f:
            data = json.load(f)
        
        # Check if required fields exist
        if 'config_general' not in data or 'results' not in data:
            return None
        
        config_general = data['config_general']
        results = data['results']
        
        # Extract model information
        model_name = config_general.get('model_name', '')
        model_private = config_general.get('model_private', False)
        model_num_parameters = config_general.get('model_num_parameters', 0)
        
        # Extract results
        all_grouped = results.get('all_grouped', {})
        
        # Extract metrics
        assin2_rte = all_grouped.get('assin2_rte', 0.0)
        assin2_sts = all_grouped.get('assin2_sts', 0.0)
        faquad_nli = all_grouped.get('faquad_nli', 0.0)
        hatebr_offensive = all_grouped.get('hatebr_offensive', 0.0)
        
        # Create row data
        row_data = {
            'json_file': str(json_file_path),
            'model_name': model_name,
            'model_private': model_private,
            'model_num_parameters': model_num_parameters,
            'assin2_rte': assin2_rte,
            'assin2_sts': assin2_sts,
            'faquad_nli': faquad_nli,
            'hatebr_offensive': hatebr_offensive
        }
        
        return row_data
        
    except Exception as e:
        print(f"Error processing {json_file_path}: {e}")
        return None

def extract_portuguese_leaderboard(repo_path):
    """

    Extract data from JSON files in the repository folder and save as CSV.

    

    Args:

        repo_path (str): Path to the repository folder

    """
    
    print("Scanning repository for JSON files...")
    
    # Find all JSON files
    json_files = find_json_files(repo_path)
    
    if not json_files:
        print("No valid JSON files found in the repository.")
        return
    
    # Prepare data for DataFrame
    data = []
    
    # Process each JSON file
    for i, json_file in enumerate(json_files):
        print(f"Processing file {i+1}/{len(json_files)}: {json_file.name}")
        
        row_data = extract_data_from_json(json_file)
        if row_data:
            data.append(row_data)
        
        # Print progress every 10 files
        if (i + 1) % 10 == 0:
            print(f"  Processed {i + 1} files...")
    
    if not data:
        print("No valid data extracted from JSON files.")
        return
    
    # Create DataFrame
    df = pd.DataFrame(data)
    
    # Write to CSV
    output_file = 'portuguese_leaderboard.csv'
    df.to_csv(output_file, index=False)
    
    print(f"\nSuccessfully extracted {len(df)} models to {output_file}")
    
    # Show first few entries as preview
    print("\nFirst 5 entries:")
    print(df.head().to_string(index=False))
    
    # Show some statistics
    if not df.empty:
        print(f"\nStatistics:")
        print(f"Total models: {len(df)}")
        print(f"Private models: {df['model_private'].sum()}")
        print(f"Public models: {(~df['model_private']).sum()}")
        
        # Average scores
        print(f"\nAverage scores:")
        print(df[['assin2_rte', 'assin2_sts', 'faquad_nli', 'hatebr_offensive']].mean().round(2))
        
        # Show data types and info
        print(f"\nDataFrame info:")
        print(df.info())

def main():
    """Main function to run the extraction."""
    parser = argparse.ArgumentParser(description='Extract Portuguese LLM Leaderboard data from JSON files')
    parser.add_argument('repo_path', help='Path to the repository folder containing JSON files')
    
    args = parser.parse_args()
    
    print("Portuguese LLM Leaderboard Data Extractor")
    print("=" * 50)
    
    try:
        extract_portuguese_leaderboard(args.repo_path)
        print("\nExtraction completed successfully!")
    except Exception as e:
        print(f"Error during extraction: {e}")
        sys.exit(1)

if __name__ == "__main__":
    main()