import gradio as gr from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments import torch # Check if GPU is available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the IMDb dataset dataset = load_dataset('imdb') # Initialize the tokenizer and model tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased') model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=2) model.to(device) # Tokenize the dataset def tokenize_function(examples): return tokenizer(examples['text'], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) # Set up training arguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=1, # Start with fewer epochs for quicker runs weight_decay=0.01, ) # Initialize the Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"].shuffle(seed=42).select(range(1000)), # Use a subset for quicker runs eval_dataset=tokenized_datasets["test"].shuffle(seed=42).select(range(1000)), ) # Train the model trainer.train() # Function to classify sentiment def classify_text(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) outputs = model(**inputs) prediction = torch.argmax(outputs.logits, dim=-1).item() return "Positive" if prediction == 1 else "Negative" # Set up the Gradio interface iface = gr.Interface(fn=classify_text, inputs="text", outputs="text") iface.launch()