Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,55 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
|
4 |
-
|
5 |
-
from transformers.models.llava.
|
6 |
|
7 |
-
# --- Diagnostic
|
8 |
-
config = AutoConfig.from_pretrained(
|
9 |
-
"lmms-lab/LLaVA-Video-7B-Qwen2",
|
10 |
-
trust_remote_code=True
|
11 |
-
)
|
12 |
print("Configuration type:", type(config))
|
13 |
print("Configuration architectures:", config.architectures)
|
14 |
-
# --- End Diagnostic ---
|
15 |
|
16 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
processor = AutoProcessor.from_pretrained(
|
18 |
"lmms-lab/LLaVA-Video-7B-Qwen2",
|
19 |
trust_remote_code=True
|
20 |
)
|
21 |
-
model =
|
22 |
"lmms-lab/LLaVA-Video-7B-Qwen2",
|
23 |
trust_remote_code=True
|
24 |
)
|
25 |
|
26 |
-
# Move model to
|
27 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
28 |
model.to(device)
|
29 |
|
30 |
def analyze_video(video_path):
|
31 |
prompt = "Analyze this video of a concert and determine the moment when the crowd is most engaged."
|
32 |
-
# Process the text and video
|
33 |
inputs = processor(text=prompt, video=video_path, return_tensors="pt")
|
34 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
35 |
-
# Generate output (
|
36 |
outputs = model.generate(**inputs, max_new_tokens=100)
|
37 |
answer = processor.decode(outputs[0], skip_special_tokens=True)
|
38 |
return answer
|
39 |
|
40 |
-
# Create the Gradio Interface
|
41 |
iface = gr.Interface(
|
42 |
fn=analyze_video,
|
43 |
inputs=gr.Video(label="Upload Concert/Event Video", type="filepath"),
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import importlib
|
4 |
+
from transformers import AutoConfig, AutoProcessor, AutoModelForCausalLM
|
5 |
+
from transformers.models.llava.configuration_llava import LlavaConfig
|
6 |
|
7 |
+
# --- Diagnostic: Load the configuration ---
|
8 |
+
config = AutoConfig.from_pretrained("lmms-lab/LLaVA-Video-7B-Qwen2", trust_remote_code=True)
|
|
|
|
|
|
|
9 |
print("Configuration type:", type(config))
|
10 |
print("Configuration architectures:", config.architectures)
|
|
|
11 |
|
12 |
+
# Expecting the architecture name to be "LlavaQwenForCausalLM"
|
13 |
+
arch = config.architectures[0] # This should be "LlavaQwenForCausalLM"
|
14 |
+
|
15 |
+
# --- Dynamic Import: Retrieve the model class by name ---
|
16 |
+
# Import the module that (should) contain the custom model class.
|
17 |
+
module = importlib.import_module("transformers.models.llava.modeling_llava")
|
18 |
+
try:
|
19 |
+
model_cls = getattr(module, arch)
|
20 |
+
print("Successfully imported model class:", model_cls)
|
21 |
+
except AttributeError:
|
22 |
+
raise ImportError(f"Cannot find class {arch} in module transformers.models.llava.modeling_llava")
|
23 |
+
|
24 |
+
# --- Register the Custom Model Class ---
|
25 |
+
# This tells the auto loader that for LlavaConfig, use our dynamically imported model class.
|
26 |
+
AutoModelForCausalLM.register(LlavaConfig, model_cls)
|
27 |
+
|
28 |
+
# --- Load Processor and Model ---
|
29 |
processor = AutoProcessor.from_pretrained(
|
30 |
"lmms-lab/LLaVA-Video-7B-Qwen2",
|
31 |
trust_remote_code=True
|
32 |
)
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
34 |
"lmms-lab/LLaVA-Video-7B-Qwen2",
|
35 |
trust_remote_code=True
|
36 |
)
|
37 |
|
38 |
+
# Move model to GPU if available
|
39 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
40 |
model.to(device)
|
41 |
|
42 |
def analyze_video(video_path):
|
43 |
prompt = "Analyze this video of a concert and determine the moment when the crowd is most engaged."
|
44 |
+
# Process the text and video input
|
45 |
inputs = processor(text=prompt, video=video_path, return_tensors="pt")
|
46 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
47 |
+
# Generate output (assuming the custom model implements generate)
|
48 |
outputs = model.generate(**inputs, max_new_tokens=100)
|
49 |
answer = processor.decode(outputs[0], skip_special_tokens=True)
|
50 |
return answer
|
51 |
|
52 |
+
# Create the Gradio Interface
|
53 |
iface = gr.Interface(
|
54 |
fn=analyze_video,
|
55 |
inputs=gr.Video(label="Upload Concert/Event Video", type="filepath"),
|