saadfarhad commited on
Commit
c5c736f
·
verified ·
1 Parent(s): 704bddb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -8
app.py CHANGED
@@ -1,31 +1,25 @@
1
  import gradio as gr
2
  import torch
3
- from transformers import AutoProcessor, AutoModel
4
 
5
  # Load the processor and model with remote code enabled.
6
  processor = AutoProcessor.from_pretrained(
7
  "lmms-lab/LLaVA-Video-7B-Qwen2",
8
  trust_remote_code=True
9
  )
10
- model = AutoModel.from_pretrained(
11
  "lmms-lab/LLaVA-Video-7B-Qwen2",
12
  trust_remote_code=True
13
  )
14
 
15
- # Use GPU if available.
16
  device = "cuda" if torch.cuda.is_available() else "cpu"
17
  model.to(device)
18
 
19
  def analyze_video(video_path):
20
  prompt = "Analyze this video of a concert and determine the moment when the crowd is most engaged."
21
- # Process text and video.
22
  inputs = processor(text=prompt, video=video_path, return_tensors="pt")
23
  inputs = {k: v.to(device) for k, v in inputs.items()}
24
-
25
- # Generate a response (this assumes the remote code has added a generate method).
26
  outputs = model.generate(**inputs, max_new_tokens=100)
27
-
28
- # Decode the output tokens.
29
  answer = processor.decode(outputs[0], skip_special_tokens=True)
30
  return answer
31
 
 
1
  import gradio as gr
2
  import torch
3
+ from transformers import AutoProcessor, AutoModelForCausalLM
4
 
5
  # Load the processor and model with remote code enabled.
6
  processor = AutoProcessor.from_pretrained(
7
  "lmms-lab/LLaVA-Video-7B-Qwen2",
8
  trust_remote_code=True
9
  )
10
+ model = AutoModelForCausalLM.from_pretrained(
11
  "lmms-lab/LLaVA-Video-7B-Qwen2",
12
  trust_remote_code=True
13
  )
14
 
 
15
  device = "cuda" if torch.cuda.is_available() else "cpu"
16
  model.to(device)
17
 
18
  def analyze_video(video_path):
19
  prompt = "Analyze this video of a concert and determine the moment when the crowd is most engaged."
 
20
  inputs = processor(text=prompt, video=video_path, return_tensors="pt")
21
  inputs = {k: v.to(device) for k, v in inputs.items()}
 
 
22
  outputs = model.generate(**inputs, max_new_tokens=100)
 
 
23
  answer = processor.decode(outputs[0], skip_special_tokens=True)
24
  return answer
25