import gradio as gr import torch from transformers import AutoProcessor, AutoModel # Load the processor and model with remote code enabled. processor = AutoProcessor.from_pretrained( "lmms-lab/LLaVA-Video-7B-Qwen2", trust_remote_code=True ) model = AutoModel.from_pretrained( "lmms-lab/LLaVA-Video-7B-Qwen2", trust_remote_code=True ) # Use GPU if available. device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def analyze_video(video_path): prompt = "Analyze this video of a concert and determine the moment when the crowd is most engaged." # Process text and video. inputs = processor(text=prompt, video=video_path, return_tensors="pt") inputs = {k: v.to(device) for k, v in inputs.items()} # Generate a response (this assumes the remote code has added a generate method). outputs = model.generate(**inputs, max_new_tokens=100) # Decode the output tokens. answer = processor.decode(outputs[0], skip_special_tokens=True) return answer iface = gr.Interface( fn=analyze_video, inputs=gr.Video(label="Upload Concert/Event Video", type="filepath"), outputs=gr.Textbox(label="Engagement Analysis"), title="Crowd Engagement Analyzer", description="Upload a video of a concert or event and the model will analyze the moment when the crowd is most engaged." ) if __name__ == "__main__": iface.launch()