Spaces:
Runtime error
Runtime error
File size: 5,029 Bytes
b77494e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import threading
import time
import huggingface_hub
from gradio_client import Client, handle_file
from trackio.media import TrackioImage
from trackio.sqlite_storage import SQLiteStorage
from trackio.typehints import LogEntry, UploadEntry
from trackio.utils import RESERVED_KEYS, fibo, generate_readable_name
BATCH_SEND_INTERVAL = 0.5
class Run:
def __init__(
self,
url: str,
project: str,
client: Client | None,
name: str | None = None,
config: dict | None = None,
space_id: str | None = None,
):
self.url = url
self.project = project
self._client_lock = threading.Lock()
self._client_thread = None
self._client = client
self._space_id = space_id
self.name = name or generate_readable_name(
SQLiteStorage.get_runs(project), space_id
)
self.config = config or {}
self._queued_logs: list[LogEntry] = []
self._queued_uploads: list[UploadEntry] = []
self._stop_flag = threading.Event()
self._client_thread = threading.Thread(target=self._init_client_background)
self._client_thread.daemon = True
self._client_thread.start()
def _batch_sender(self):
"""Send batched logs every BATCH_SEND_INTERVAL."""
while not self._stop_flag.is_set() or len(self._queued_logs) > 0:
# If the stop flag has been set, then just quickly send all
# the logs and exit.
if not self._stop_flag.is_set():
time.sleep(BATCH_SEND_INTERVAL)
with self._client_lock:
if self._queued_logs and self._client is not None:
logs_to_send = self._queued_logs.copy()
self._queued_logs.clear()
self._client.predict(
api_name="/bulk_log",
logs=logs_to_send,
hf_token=huggingface_hub.utils.get_token(),
)
if self._queued_uploads and self._client is not None:
uploads_to_send = self._queued_uploads.copy()
self._queued_uploads.clear()
self._client.predict(
api_name="/bulk_upload_media",
uploads=uploads_to_send,
hf_token=huggingface_hub.utils.get_token(),
)
def _init_client_background(self):
if self._client is None:
fib = fibo()
for sleep_coefficient in fib:
try:
client = Client(self.url, verbose=False)
with self._client_lock:
self._client = client
break
except Exception:
pass
if sleep_coefficient is not None:
time.sleep(0.1 * sleep_coefficient)
self._batch_sender()
def _process_media(self, metrics, step: int | None) -> dict:
"""
Serialize media in metrics and upload to space if needed.
"""
serializable_metrics = {}
if not step:
step = 0
for key, value in metrics.items():
if isinstance(value, TrackioImage):
value._save(self.project, self.name, step)
serializable_metrics[key] = value._to_dict()
if self._space_id:
# Upload local media when deploying to space
upload_entry: UploadEntry = {
"project": self.project,
"run": self.name,
"step": step,
"uploaded_file": handle_file(value._get_absolute_file_path()),
}
with self._client_lock:
self._queued_uploads.append(upload_entry)
else:
serializable_metrics[key] = value
return serializable_metrics
def log(self, metrics: dict, step: int | None = None):
for k in metrics.keys():
if k in RESERVED_KEYS or k.startswith("__"):
raise ValueError(
f"Please do not use this reserved key as a metric: {k}"
)
metrics = self._process_media(metrics, step)
log_entry: LogEntry = {
"project": self.project,
"run": self.name,
"metrics": metrics,
"step": step,
}
with self._client_lock:
self._queued_logs.append(log_entry)
def finish(self):
"""Cleanup when run is finished."""
self._stop_flag.set()
# Wait for the batch sender to finish before joining the client thread.
time.sleep(2 * BATCH_SEND_INTERVAL)
if self._client_thread is not None:
print(
f"* Run finished. Uploading logs to Trackio Space: {self.url} (please wait...)"
)
self._client_thread.join()
|