File size: 2,021 Bytes
34c2609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from typing import Any, Literal, Optional, Union

from pandas import DataFrame


class Table:
    """
    Initializes a Table object.

    Args:
        columns (`list[str]`, *optional*, defaults to `None`):
            Names of the columns in the table. Optional if `data` is provided. Not
            expected if `dataframe` is provided. Currently ignored.
        data (`list[list[Any]]`, *optional*, defaults to `None`):
            2D row-oriented array of values.
        dataframe (`pandas.`DataFrame``, *optional*, defaults to `None`):
            DataFrame object used to create the table. When set, `data` and `columns`
            arguments are ignored.
        rows (`list[list[any]]`, *optional*, defaults to `None`):
            Currently ignored.
        optional (`bool` or `list[bool]`, *optional*, defaults to `True`):
            Currently ignored.
        allow_mixed_types (`bool`, *optional*, defaults to `False`):
            Currently ignored.
        log_mode: (`Literal["IMMUTABLE", "MUTABLE", "INCREMENTAL"]` or `None`, *optional*, defaults to `"IMMUTABLE"`):
            Currently ignored.
    """

    TYPE = "trackio.table"

    def __init__(
        self,
        columns: Optional[list[str]] = None,
        data: Optional[list[list[Any]]] = None,
        dataframe: Optional[DataFrame] = None,
        rows: Optional[list[list[Any]]] = None,
        optional: Union[bool, list[bool]] = True,
        allow_mixed_types: bool = False,
        log_mode: Optional[
            Literal["IMMUTABLE", "MUTABLE", "INCREMENTAL"]
        ] = "IMMUTABLE",
    ):
        # TODO: implement support for columns, dtype, optional, allow_mixed_types, and log_mode.
        # for now (like `rows`) they are included for API compat but don't do anything.

        if dataframe is None:
            self.data = data
        else:
            self.data = dataframe.to_dict(orient="records")

    def _to_dict(self):
        return {
            "_type": self.TYPE,
            "_value": self.data,
        }