import os import shutil from threading import local import uuid from pathlib import Path from typing import Literal import numpy as np from PIL import Image as PILImage import mediapy as mp try: # absolute imports when installed from trackio.file_storage import FileStorage from trackio.utils import TRACKIO_DIR except ImportError: # relative imports for local execution on Spaces from file_storage import FileStorage from utils import TRACKIO_DIR class TrackioImage: """ Creates an image that can be logged with trackio. Demo: fake-training-images """ TYPE = "trackio.image" def __init__( self, value: str | np.ndarray | PILImage.Image, caption: str | None = None ): """ Parameters: value: A string path to an image, a numpy array, or a PIL Image. caption: A string caption for the image. """ self.caption = caption self._pil = TrackioImage._as_pil(value) self._file_path: Path | None = None self._file_format: str | None = None @staticmethod def _as_pil(value: str | np.ndarray | PILImage.Image) -> PILImage.Image: try: if isinstance(value, str): return PILImage.open(value).convert("RGBA") elif isinstance(value, np.ndarray): arr = np.asarray(value).astype("uint8") return PILImage.fromarray(arr).convert("RGBA") elif isinstance(value, PILImage.Image): return value.convert("RGBA") except Exception as e: raise ValueError(f"Failed to process image data: {value}") from e def _save(self, project: str, run: str, step: int = 0, format: str = "PNG") -> str: if not self._file_path: # Save image as {TRACKIO_DIR}/media/{project}/{run}/{step}/{uuid}.{ext} filename = f"{uuid.uuid4()}.{format.lower()}" path = FileStorage.save_image( self._pil, project, run, step, filename, format=format ) self._file_path = path.relative_to(TRACKIO_DIR) self._file_format = format return str(self._file_path) def _get_relative_file_path(self) -> Path | None: return self._file_path def _get_absolute_file_path(self) -> Path | None: return TRACKIO_DIR / self._file_path def _to_dict(self) -> dict: if not self._file_path: raise ValueError("Image must be saved to file before serialization") return { "_type": self.TYPE, "file_path": str(self._get_relative_file_path()), "file_format": self._file_format, "caption": self.caption, } @classmethod def _from_dict(cls, obj: dict) -> "TrackioImage": if not isinstance(obj, dict): raise TypeError(f"Expected dict, got {type(obj).__name__}") if obj.get("_type") != cls.TYPE: raise ValueError(f"Wrong _type: {obj.get('_type')!r}") file_path = obj.get("file_path") if not isinstance(file_path, str): raise TypeError( f"'file_path' must be string, got {type(file_path).__name__}" ) absolute_path = TRACKIO_DIR / file_path try: if not absolute_path.is_file(): raise ValueError(f"Image file not found: {file_path}") pil = PILImage.open(absolute_path).convert("RGBA") instance = cls(pil, caption=obj.get("caption")) instance._file_path = Path(file_path) instance._file_format = obj.get("file_format") return instance except Exception as e: raise ValueError(f"Failed to load image from file: {absolute_path}") from e TrackioVideoSourceType = str | Path | np.ndarray TrackioVideoFormatType = Literal["gif", "mp4", "webm", "ogg"] class TrackioVideo: """ Creates a video that can be logged with trackio. Demo: video-demo """ TYPE = "trackio.video" def __init__(self, value: TrackioVideoSourceType, caption: str | None = None, fps: int | None = None, format: TrackioVideoFormatType | None = None, ): self._value = value self._caption = caption self._fps = fps self._format = format self._file_path: Path | None = None @property def _codec(self) -> str | None: match self._format: case "gif": return "gif" case "mp4": return "h264" case "webm" | "ogg": return "vp9" case _: return None def _save(self, project: str, run: str, step: int = 0): if self._file_path: return media_dir = FileStorage.init_project_media_path(project, run, step) filename = f"{uuid.uuid4()}.{self._file_extension()}" media_path = media_dir / filename if isinstance(self._value, np.ndarray): video = TrackioVideo._process_ndarray(self._value) mp.write_video(media_path, video, fps=self._fps, codec=self._codec) elif isinstance(self._value, str | Path): if os.path.isfile(self._value): shutil.copy(self._value, media_path) else: raise ValueError(f"File not found: {self._value}") self._file_path = media_path.relative_to(TRACKIO_DIR) def _get_absolute_file_path(self) -> Path | None: return TRACKIO_DIR / self._file_path def _file_extension(self) -> str: if self._format is None: if self._file_path is None: raise ValueError("File format not specified and no file path provided") return self._file_path.suffix[1:].lower() return self._format # def _gen_upload_file_path(self, project: str, run: str, step: int) -> Path: # if self._upload_file_path: # return self._upload_file_path # filename = f"{uuid.uuid4()}.{self._file_extension()}" # dir = FileStorage.init_project_media_path(project, run, step) # return Path.home() / dir.relative_to(TRACKIO_DIR) / filename @staticmethod def _process_ndarray(value: np.ndarray) -> np.ndarray: # Verify value is either 4D (single video) or 5D array (batched videos). # Expected format: (frames, channels, height, width) for 4D or (batch, frames, channels, height, width) for 5D if value.ndim < 4: raise ValueError("Video requires at least 4 dimensions (frames, channels, height, width)") if value.ndim > 5: raise ValueError("Videos can have at most 5 dimensions (batch, frames, channels, height, width)") if value.ndim == 4: # Reshape to 5D with single batch: (1, frames, channels, height, width) value = value[np.newaxis, ...] value = TrackioVideo._tile_batched_videos(value) # Convert final result from (F, H, W, C) to (F, C, H, W) for mediapy value = np.transpose(value, (0, 3, 1, 2)) return value @staticmethod def _tile_batched_videos(video: np.ndarray) -> np.ndarray: """ Tiles a batch of videos into a grid of videos. Input format: (batch, frames, channels, height, width) - original FCHW format Output format: (frames, total_height, total_width, channels) """ batch_size, frames, channels, height, width = video.shape next_pow2 = 1 << (batch_size - 1).bit_length() if batch_size != next_pow2: pad_len = next_pow2 - batch_size pad_shape = (pad_len, frames, channels, height, width) padding = np.zeros(pad_shape, dtype=video.dtype) video = np.concatenate((video, padding), axis=0) batch_size = next_pow2 n_rows = 1 << ((batch_size.bit_length() - 1) // 2) n_cols = batch_size // n_rows # Reshape to grid layout: (n_rows, n_cols, frames, channels, height, width) video = video.reshape(n_rows, n_cols, frames, channels, height, width) # Rearrange dimensions to (frames, total_height, total_width, channels) video = video.transpose(2, 0, 4, 1, 5, 3) video = video.reshape(frames, n_rows * height, n_cols * width, channels) return video def _to_dict(self) -> dict: return { "_type": self.TYPE, "file_path": str(self._file_path), "caption": self._caption, }