Spaces:
Running
Running
File size: 4,060 Bytes
9258fc6 419d020 d921763 9258fc6 b1b1487 9258fc6 7a07632 419d020 9258fc6 419d020 b1b1487 9258fc6 419d020 9258fc6 419d020 7a07632 419d020 9258fc6 b1b1487 9258fc6 419d020 d921763 419d020 d921763 9258fc6 419d020 9258fc6 b1b1487 419d020 b1b1487 419d020 b1b1487 419d020 b1b1487 419d020 b1b1487 419d020 9258fc6 419d020 9258fc6 419d020 9258fc6 419d020 9258fc6 3b2fd42 9258fc6 419d020 9258fc6 4f0a44b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
from transformers import pipeline
import pandas as pd
import plotly.express as px
# ------------------------------
# Load pretrained models
# ------------------------------
text_classifier = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
return_all_scores=True
)
audio_classifier = pipeline(
"audio-classification",
model="superb/wav2vec2-base-superb-er"
)
# ------------------------------
# Emotion to Emoji mapping
# ------------------------------
EMOJI_MAP = {
"joy": "π",
"sadness": "π’",
"anger": "π ",
"fear": "π¨",
"love": "β€οΈ",
"surprise": "π²",
"disgust": "π€’",
"neutral": "π"
}
# ------------------------------
# Fusion function
# ------------------------------
def fuse_predictions(text_preds=None, audio_preds=None, w_text=0.5, w_audio=0.5):
labels = set()
if text_preds:
labels |= {p['label'] for p in text_preds}
if audio_preds:
labels |= {p['label'] for p in audio_preds}
scores = {l: 0.0 for l in labels}
def normalize(preds):
s = sum(p['score'] for p in preds)
return {p['label']: p['score']/s for p in preds}
if text_preds:
t_norm = normalize(text_preds)
for l in labels:
scores[l] += w_text * t_norm.get(l, 0)
if audio_preds:
a_norm = normalize(audio_preds)
for l in labels:
scores[l] += w_audio * a_norm.get(l, 0)
best = max(scores.items(), key=lambda x: x[1]) if scores else ("none", 0)
return {"fused_label": best[0], "fused_score": round(best[1], 3), "all_scores": scores}
# ------------------------------
# Create bar chart with emojis
# ------------------------------
def make_bar_chart(scores_dict, title="Emotion Scores"):
df = pd.DataFrame({
"Emotion": [f"{EMOJI_MAP.get(k, '')} {k}" for k in scores_dict.keys()],
"Score": list(scores_dict.values())
})
fig = px.bar(df, x="Emotion", y="Score", text="Score",
title=title, range_y=[0,1],
color="Emotion", color_discrete_sequence=px.colors.qualitative.Bold)
fig.update_traces(texttemplate='%{text:.2f}', textposition='outside')
fig.update_layout(yaxis_title="Probability", xaxis_title="Emotion", showlegend=False)
return fig
# ------------------------------
# Prediction function
# ------------------------------
def predict(text, audio, w_text, w_audio):
text_preds, audio_preds = None, None
if text:
text_preds = text_classifier(text)[0]
if audio:
audio_preds = audio_classifier(audio)
fused = fuse_predictions(text_preds, audio_preds, w_text, w_audio)
# Bar charts
charts = []
if text_preds:
charts.append(make_bar_chart({p['label']: p['score'] for p in text_preds}, "Text Emotion Scores"))
if audio_preds:
charts.append(make_bar_chart({p['label']: p['score'] for p in audio_preds}, "Audio Emotion Scores"))
charts.append(make_bar_chart(fused['all_scores'], f"Fused Emotion Scores\nPrediction: {EMOJI_MAP.get(fused['fused_label'], '')} {fused['fused_label']}"))
return charts
# ------------------------------
# Build Gradio interface with emojis
# ------------------------------
with gr.Blocks() as demo:
gr.Markdown("## π Multimodal Emotion Classification (Text + Speech) π")
with gr.Row():
with gr.Column():
txt = gr.Textbox(label="π Text input", placeholder="Type something emotional...")
aud = gr.Audio(type="filepath", label="π€ Upload speech (wav/mp3)")
w1 = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="πΉ Text weight (w_text)")
w2 = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="πΉ Audio weight (w_audio)")
btn = gr.Button("β¨ Predict")
with gr.Column():
chart_output = gr.Plot(label="Emotion Scores")
btn.click(fn=predict, inputs=[txt, aud, w1, w2], outputs=[chart_output]*3) # 3 charts: text, audio, fused
demo.launch()
|