File size: 6,580 Bytes
9fc6414
ec08466
9fc6414
5df6d0e
9fc6414
5df6d0e
 
e8d546b
 
 
 
 
 
 
 
 
 
 
 
5df6d0e
e8d546b
9fc6414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c970
 
 
 
 
 
9fc6414
 
 
 
5df6d0e
e8d546b
5df6d0e
e8d546b
 
 
9fc6414
e8d546b
 
9fc6414
e8d546b
 
 
 
 
 
 
 
 
9fc6414
e8d546b
 
 
9fc6414
e8d546b
 
 
9fc6414
e8d546b
 
9fc6414
e8d546b
 
 
9fc6414
a7c4bde
 
e17c970
 
 
ec08466
 
 
 
 
e17c970
ec08466
 
e17c970
ec08466
 
 
 
 
e17c970
a7c4bde
e17c970
 
a7c4bde
 
e17c970
ec08466
 
 
 
 
e17c970
 
 
a7c4bde
ec08466
 
e17c970
a7c4bde
e17c970
 
 
 
 
a7c4bde
ec08466
a7c4bde
9fc6414
a7c4bde
 
 
 
 
 
 
 
 
 
 
 
 
 
ec08466
a7c4bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fc6414
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import os

# Check if model file exists
model_path = "export.pkl"
learn_inf = None

if os.path.exists(model_path):
    try:
        from fastai.vision.all import load_learner
        # Load your trained model
        learn_inf = load_learner(model_path)
        print("✅ Model loaded successfully!")
    except Exception as e:
        print(f"❌ Error loading model: {e}")
        print("This might be due to fastai version compatibility issues.")
        learn_inf = None
else:
    print("Warning: export.pkl not found. Please upload your trained model file.")

# Classes
classes = [
    "AnnualCrop","Forest","HerbaceousVegetation","Highway","Industrial",
    "Pasture","PermanentCrop","Residential","River","SeaLake"
]

# Assign colors for visualization
class_colors = {
    "AnnualCrop": (255, 255, 0),
    "Forest": (34, 139, 34),
    "HerbaceousVegetation": (144, 238, 144),
    "Highway": (128, 128, 128),
    "Industrial": (255, 165, 0),
    "Pasture": (173, 255, 47),
    "PermanentCrop": (0, 255, 0),
    "Residential": (255, 0, 0),
    "River": (0, 191, 255),
    "SeaLake": (0, 0, 139)
}

# Debug: Print class information
print(f"Total classes defined: {len(classes)}")
print(f"Total colors defined: {len(class_colors)}")
print("Classes:", classes)
print("Colors:", list(class_colors.keys()))

patch_size = 128
stride = 128

def classify_image(img: Image.Image):
    if learn_inf is None:
        return None, "❌ Model not loaded! Please check the console for error messages. You may need to retrain your model with a compatible fastai version or use fastai<2.8.0."
    
    try:
        img_np = np.array(img.convert("RGB"))
        h, w, _ = img_np.shape

        mask = np.zeros((h, w, 3), dtype=np.uint8)
        coverage = {cls:0 for cls in classes}

        # Sliding window classification
        for y in range(0, h-patch_size+1, stride):
            for x in range(0, w-patch_size+1, stride):
                patch = img_np[y:y+patch_size, x:x+patch_size]
                patch_pil = Image.fromarray(patch).convert("RGB")
                pred, _, _ = learn_inf.predict(patch_pil)
                color = class_colors[pred]
                mask[y:y+patch_size, x:x+patch_size] = color
                coverage[pred] += patch_size*patch_size

        # Blend original + mask
        blended = (0.6*img_np + 0.4*mask).astype(np.uint8)
        blended_img = Image.fromarray(blended)

        # Compute coverage percentages
        total_pixels = h*w
        coverage_pct = {cls: (coverage[cls]/total_pixels)*100 for cls in classes}

        # Prepare statistics text
        stats_text = "\n".join([f"{cls}: {coverage_pct[cls]:.2f}%" for cls in classes])

        return blended_img, stats_text
    except Exception as e:
        return None, f"❌ Error during classification: {str(e)}"

def create_color_legend():
    """Create a color legend image showing all land cover classes and their colors"""
    # Create a white background image - increased height to fit all 10 classes
    legend_width = 450
    legend_height = 450  # Increased height to accommodate all classes
    legend_img = Image.new('RGB', (legend_width, legend_height), 'white')
    draw = ImageDraw.Draw(legend_img)
    
    # Try to use a default font, fallback to basic if not available
    try:
        font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 14)  # Slightly smaller font
    except:
        try:
            font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 14)
        except:
            font = ImageFont.load_default()
    
    # Title
    draw.text((10, 10), "🎨 Color Legend - Land Cover Classes", fill='black', font=font)
    draw.text((10, 30), f"Total Classes: {len(class_colors)}", fill='blue', font=font)
    
    # Draw color squares with labels - adjusted spacing
    y_offset = 55
    for i, (cls, color) in enumerate(class_colors.items()):
        # Draw color square
        y_start = y_offset + i * 35  # Increased spacing between rows
        y_end = y_start + 25
        
        # Draw the colored rectangle
        draw.rectangle([20, y_start, 50, y_end], fill=color, outline='black', width=2)
        
        # Add class name with index for debugging
        class_text = f"{i+1}. {cls}"
        draw.text((60, y_start + 2), class_text, fill='black', font=font)
        
        # Add RGB values for reference
        rgb_text = f"RGB{color}"
        draw.text((280, y_start + 2), rgb_text, fill='gray', font=font)
        
        y_offset += 35  # Increased spacing
    
    # Add footer with total count
    footer_y = y_offset + 10
    draw.text((10, footer_y), f"Legend shows {len(class_colors)} land cover classes", fill='green', font=font)
    
    return legend_img

# Build Gradio interface
with gr.Blocks(title="🌍 Satellite Land Cover Classifier") as iface:
    gr.Markdown("# 🌍 Satellite Land Cover Classifier")
    gr.Markdown("Upload a satellite image and get land-cover classification heatmap + coverage stats.")
    
    with gr.Row():
        with gr.Column(scale=2):
            # Input section
            gr.Markdown("## 📤 Upload Image")
            input_image = gr.Image(type="pil", label="Upload Satellite Image")
            classify_btn = gr.Button("🔍 Classify Image", variant="primary")
        
        with gr.Column(scale=1):
            # Color legend section
            gr.Markdown("## 🎨 Color Legend")
            legend_image = gr.Image(value=create_color_legend(), label="Land Cover Classes", interactive=False)
    
    with gr.Row():
        with gr.Column(scale=2):
            # Output section
            gr.Markdown("## 📊 Results")
            output_image = gr.Image(type="pil", label="Classification Result")
            output_stats = gr.Textbox(label="Coverage Statistics", lines=10)
        
        with gr.Column(scale=1):
            # Additional info
            gr.Markdown("## ℹ️ How it works")
            gr.Markdown("""
            This classifier uses a sliding window approach:
            - **Patch Size**: 128x128 pixels
            - **Stride**: 128 pixels (no overlap)
            - **Output**: Color-coded heatmap + coverage percentages
            
            **Note**: You need to upload your trained model file (export.pkl) to use this classifier.
            """)
    
    # Connect the button
    classify_btn.click(
        fn=classify_image,
        inputs=input_image,
        outputs=[output_image, output_stats]
    )

iface.launch()