saherPervaiz commited on
Commit
46f1f02
·
verified ·
1 Parent(s): b970dfa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -5
app.py CHANGED
@@ -1,11 +1,26 @@
1
  import gradio as gr
2
  from utils import generate_response
 
 
 
3
 
4
- # Placeholder function for image description (replace this with a real model or API)
 
 
 
 
5
  def describe_image(image):
6
- # This is a placeholder. In a real implementation, use a model like CLIP or other image captioning models.
7
- # You can integrate an API or a pre-trained model to generate descriptions for images.
8
- return "This is a placeholder description for the uploaded image."
 
 
 
 
 
 
 
 
9
 
10
  # Define chatbot interaction function
11
  def chat(user_input, chat_history, image):
@@ -13,7 +28,7 @@ def chat(user_input, chat_history, image):
13
  # Generate text response
14
  response = generate_response(user_input)
15
 
16
- # If an image is uploaded, describe it
17
  if image is not None:
18
  image_description = describe_image(image)
19
  response += f"\n\n[Image Description]: {image_description}"
 
1
  import gradio as gr
2
  from utils import generate_response
3
+ from transformers import BlipProcessor, BlipForConditionalGeneration
4
+ import torch
5
+ from PIL import Image
6
 
7
+ # Load the BLIP image captioning model and processor
8
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
9
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
10
+
11
+ # Function to generate description for an image using BLIP
12
  def describe_image(image):
13
+ try:
14
+ # Convert the image to the format the model expects
15
+ inputs = processor(images=image, return_tensors="pt")
16
+
17
+ # Generate a caption for the image
18
+ out = model.generate(**inputs)
19
+ description = processor.decode(out[0], skip_special_tokens=True)
20
+
21
+ return description
22
+ except Exception as e:
23
+ return f"Error describing the image: {e}"
24
 
25
  # Define chatbot interaction function
26
  def chat(user_input, chat_history, image):
 
28
  # Generate text response
29
  response = generate_response(user_input)
30
 
31
+ # If an image is uploaded, describe it using the image captioning model
32
  if image is not None:
33
  image_description = describe_image(image)
34
  response += f"\n\n[Image Description]: {image_description}"