File size: 6,410 Bytes
8b8745e
 
 
 
c110a72
8b8745e
c110a72
 
8b8745e
 
c110a72
 
8b8745e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c110a72
8b8745e
c110a72
 
8b8745e
c110a72
8b8745e
 
c110a72
 
8b8745e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import streamlit as st
import pandas as pd
import requests
import urllib.parse

# Fetch the News API key from the environment variable
news_api_key = "fe1e6bcbbf384b3e9220a7a1138805e0"  # Replace with your News API key

# Check if the API key is available, if not show an error and stop
if not news_api_key:
    st.error("NEWS_API_KEY is not set. Please provide a valid API key.")
    st.stop()

# Function to load and preprocess data
@st.cache_data
def load_data(file):
    df = pd.read_csv(file)
    return df

# Function to provide detailed health advice based on user data
def provide_observed_advice(data):
    advice = []

    # High depression and anxiety with low stress-relief activities
    if data['depression'] > 7 and data['anxiety'] > 7:
        advice.append("You seem to be experiencing high levels of both depression and anxiety. It's important to consider professional mental health support. You might also benefit from engaging in calming activities like deep breathing, mindfulness, or yoga.")

    # Moderate depression or anxiety
    elif data['depression'] > 5 or data['anxiety'] > 5:
        advice.append("You are showing moderate levels of depression or anxiety. It would be helpful to develop healthy coping strategies like maintaining a regular sleep schedule, engaging in physical activity, and reaching out to friends or family for support.")

    # High isolation and low stress-relief activities
    if data['isolation'] > 7 and data['stress_relief_activities'] < 5:
        advice.append("It seems you are feeling isolated, and your engagement in stress-relief activities is low. It's important to connect with friends or join community groups. Incorporate activities that help alleviate stress, such as walking, journaling, or meditation.")

    # High future insecurity
    if data['future_insecurity'] > 7:
        advice.append("You are feeling a significant amount of insecurity about the future. It can be helpful to break down your larger goals into smaller, manageable tasks. Seeking career counseling or mentorship could provide valuable guidance and reduce anxiety about the future.")

    # Overall low engagement in stress-relief activities
    if data['stress_relief_activities'] < 5:
        advice.append("Your engagement in stress-relief activities is quite low. It's essential to engage in activities that reduce stress and promote mental wellness, such as hobbies, physical exercise, and relaxation techniques like deep breathing or yoga.")

    return advice

# Function to fetch health articles from News API based on the query
def get_health_articles(query):
    url = f"https://newsapi.org/v2/everything?q={query}&apiKey={news_api_key}"
    
    try:
        response = requests.get(url)
        response.raise_for_status()  # This will raise an HTTPError for bad responses
        data = response.json()  # Assuming the API returns JSON
        if 'articles' in data:
            articles = [{"title": item["title"], "url": item["url"]} for item in data['articles']]
        else:
            articles = []
        return articles
    except requests.exceptions.HTTPError as http_err:
        st.error(f"HTTP error occurred: {http_err}. Please check your API key and the endpoint.")
        st.error(f"Response content: {response.text}")
        return []
    except requests.exceptions.RequestException as err:
        st.error(f"Error fetching articles: {err}. Please check your internet connection.")
        return []

# Streamlit app layout
def main():
    # Set a background color and style
    st.markdown(
        """
        <style>
        .stApp {
            background-color: #F4F4F9;
        }
        .stButton>button {
            background-color: #6200EE;
            color: white;
            font-size: 18px;
        }
        .stSlider>div>div>span {
            color: #6200EE;
        }
        .stTextInput>div>div>input {
            background-color: #E0E0E0;
        }
        </style>
        """,
        unsafe_allow_html=True
    )

    # Title and header
    st.title("🌟 **Student Health Advisory Assistant** 🌟")
    st.markdown("### **Analyze your well-being and get personalized advice**")

    # File upload
    uploaded_file = st.file_uploader("Upload your dataset (CSV)", type=["csv"])
    if uploaded_file:
        df = load_data(uploaded_file)
        st.write("### Dataset Preview:")
        st.dataframe(df.head())

        # User input for analysis
        st.markdown("### **Input Your Details**")
        gender = st.selectbox("πŸ”Ή Gender", ["Male", "Female"], help="Select your gender.")
        age = st.slider("πŸ”Ή Age", 18, 35, step=1)
        depression = st.slider("πŸ”Ή Depression Level (1-10)", 1, 10)
        anxiety = st.slider("πŸ”Ή Anxiety Level (1-10)", 1, 10)
        isolation = st.slider("πŸ”Ή Isolation Level (1-10)", 1, 10)
        future_insecurity = st.slider("πŸ”Ή Future Insecurity Level (1-10)", 1, 10)
        stress_relief_activities = st.slider("πŸ”Ή Stress Relief Activities Level (1-10)", 1, 10)

        # Data dictionary for advice
        user_data = {
            "gender": gender,
            "age": age,
            "depression": depression,
            "anxiety": anxiety,
            "isolation": isolation,
            "future_insecurity": future_insecurity,
            "stress_relief_activities": stress_relief_activities,
        }

        # Provide advice based on user inputs
        if st.button("πŸ” Get Observed Advice", key="advice_btn"):
            st.subheader("πŸ”” **Health Advice Based on Observations** πŸ””")
            advice = provide_observed_advice(user_data)
            if advice:
                for i, tip in enumerate(advice, 1):
                    st.write(f"πŸ“Œ {i}. {tip}")
            else:
                st.warning("No advice available based on your inputs.")

            # Fetch related health articles based on user input
            st.subheader("πŸ“° **Related Health Articles** πŸ“°")
            query = "mental health anxiety depression isolation stress relief"
            articles = get_health_articles(query)
            if articles:
                for article in articles:
                    st.write(f"🌐 [{article['title']}]({article['url']})")
            else:
                st.write("No articles found. Please check your API key or internet connection.")

if __name__ == "__main__":
    main()