Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import requests | |
# News API Key | |
news_api_key = "AIzaSyAlvoXLqzqcZgVjhQeCNUsQgk6_SGHQNr8" # Replace with your News API key | |
def load_data(file): | |
return pd.read_csv(file) | |
def fetch_health_articles(query): | |
url = f"https://newsapi.org/v2/everything?q={query}&apiKey={news_api_key}" | |
response = requests.get(url) | |
if response.status_code == 200: | |
articles = response.json().get('articles', []) | |
return articles[:5] | |
else: | |
st.error("Failed to fetch news articles. Please check your API key or try again later.") | |
return [] | |
def stress_level_to_string(stress_level): | |
"""Convert numerical stress level (0, 1, 2) to a string representation.""" | |
if stress_level == 0: | |
return "Low" | |
elif stress_level == 1: | |
return "Moderate" | |
else: | |
return "High" | |
def provide_advice_from_articles(data): | |
advice = [] | |
stress_level = stress_level_to_string(data['stress_level']) | |
if stress_level == "High": | |
advice.append("Searching for articles related to high stress...") | |
articles = fetch_health_articles("high stress") | |
for article in articles: | |
advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})") | |
elif stress_level == "Moderate": | |
advice.append("Searching for articles related to moderate stress...") | |
articles = fetch_health_articles("moderate stress") | |
for article in articles: | |
advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})") | |
else: | |
advice.append("Searching for articles related to low stress...") | |
articles = fetch_health_articles("low stress") | |
for article in articles: | |
advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})") | |
return advice | |
def plot_graphs(data): | |
"""Create subplots for visualization.""" | |
st.markdown("### π Data Visualizations") | |
st.write("Explore key insights through visualizations.") | |
# Correlation heatmap | |
st.markdown("#### Correlation Heatmap") | |
fig, ax = plt.subplots(figsize=(10, 8)) | |
sns.heatmap(data.corr(), annot=True, cmap="coolwarm", ax=ax) | |
ax.set_title("Correlation Heatmap") | |
st.pyplot(fig) | |
def main(): | |
st.set_page_config( | |
page_title="Student Well-being Advisor", | |
page_icon="π", | |
layout="wide", | |
initial_sidebar_state="expanded", | |
) | |
st.sidebar.title("Navigation") | |
st.sidebar.write("Use the sidebar to navigate through the app.") | |
st.sidebar.markdown("### π Upload Data") | |
st.sidebar.write("Start by uploading your dataset for analysis.") | |
st.sidebar.markdown("### π Analysis & Advice") | |
st.sidebar.write("Get detailed insights and personalized advice.") | |
st.title("π Student Well-being Advisor") | |
st.subheader("Analyze data and provide professional mental health recommendations.") | |
st.write(""" | |
This app helps identify areas of concern in students' well-being and provides personalized advice based on their responses. | |
""") | |
st.markdown("## π Upload Your Dataset") | |
uploaded_file = st.file_uploader("Upload your dataset (CSV)", type=["csv"]) | |
if uploaded_file: | |
df = load_data(uploaded_file) | |
st.success("Dataset uploaded successfully!") | |
st.write("### Dataset Preview:") | |
st.dataframe(df.head()) | |
required_columns = [ | |
'anxiety_level', 'self_esteem', 'mental_health_history', 'depression', | |
'headache', 'blood_pressure', 'sleep_quality', 'breathing_problem', | |
'noise_level', 'living_conditions', 'safety', 'basic_needs', | |
'academic_performance', 'study_load', 'teacher_student_relationship', | |
'future_career_concerns', 'social_support', 'peer_pressure', | |
'extracurricular_activities', 'bullying', 'stress_level' | |
] | |
missing_columns = [col for col in required_columns if col not in df.columns] | |
if missing_columns: | |
st.error(f"The uploaded dataset is missing the following required columns: {', '.join(missing_columns)}") | |
else: | |
if df.isnull().values.any(): | |
st.warning("The dataset contains missing values. Rows with missing values will be skipped.") | |
df = df.dropna() | |
tab1, tab2, tab3 = st.tabs(["π Home", "π Analysis", "π° Resources"]) | |
with tab1: | |
st.write("### Welcome to the Well-being Advisor!") | |
st.write(""" | |
Use the tabs to explore data, generate advice, and access mental health resources. | |
""") | |
with tab2: | |
st.markdown("### π Select a Row for Analysis") | |
selected_row = st.selectbox( | |
"Select a row (based on index) to analyze:", | |
options=df.index, | |
format_func=lambda x: f"Row {x} - Stress Level: {stress_level_to_string(df.loc[x, 'stress_level'])}, Anxiety: {df.loc[x, 'anxiety_level']}, Depression: {df.loc[x, 'depression']}", | |
) | |
row_data = df.loc[selected_row].to_dict() | |
st.write("### Selected User Details:") | |
st.json(row_data) | |
st.subheader("π Health Advice Based on Articles") | |
advice = provide_advice_from_articles(row_data) | |
if advice: | |
for i, tip in enumerate(advice, 1): | |
st.write(f"π **{i}.** {tip}") | |
else: | |
st.warning("No specific advice available based on this user's data.") | |
# Include graphs in analysis tab | |
plot_graphs(df) | |
with tab3: | |
st.subheader("π° Mental Health Resources") | |
articles = fetch_health_articles("mental health") | |
if articles: | |
for article in articles: | |
st.write(f"**{article['title']}**") | |
st.write(f"{article['description']}") | |
st.write(f"[Read more]({article['url']})") | |
else: | |
st.write("No articles available at the moment.") | |
if __name__ == "__main__": | |
main() | |