Health_advisor / app.py
saherPervaiz's picture
Update app.py
d2606af verified
raw
history blame
6.44 kB
import os
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import requests
# News API Key
news_api_key = "AIzaSyAlvoXLqzqcZgVjhQeCNUsQgk6_SGHQNr8" # Replace with your News API key
@st.cache_data
def load_data(file):
return pd.read_csv(file)
def fetch_health_articles(query):
url = f"https://newsapi.org/v2/everything?q={query}&apiKey={news_api_key}"
response = requests.get(url)
if response.status_code == 200:
articles = response.json().get('articles', [])
return articles[:5]
else:
st.error("Failed to fetch news articles. Please check your API key or try again later.")
return []
def stress_level_to_string(stress_level):
"""Convert numerical stress level (0, 1, 2) to a string representation."""
if stress_level == 0:
return "Low"
elif stress_level == 1:
return "Moderate"
else:
return "High"
def provide_advice_from_articles(data):
advice = []
stress_level = stress_level_to_string(data['stress_level'])
if stress_level == "High":
advice.append("Searching for articles related to high stress...")
articles = fetch_health_articles("high stress")
for article in articles:
advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})")
elif stress_level == "Moderate":
advice.append("Searching for articles related to moderate stress...")
articles = fetch_health_articles("moderate stress")
for article in articles:
advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})")
else:
advice.append("Searching for articles related to low stress...")
articles = fetch_health_articles("low stress")
for article in articles:
advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})")
return advice
def plot_graphs(data):
"""Create subplots for visualization."""
st.markdown("### πŸ“Š Data Visualizations")
st.write("Explore key insights through visualizations.")
# Correlation heatmap
st.markdown("#### Correlation Heatmap")
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(data.corr(), annot=True, cmap="coolwarm", ax=ax)
ax.set_title("Correlation Heatmap")
st.pyplot(fig)
def main():
st.set_page_config(
page_title="Student Well-being Advisor",
page_icon="πŸ“Š",
layout="wide",
initial_sidebar_state="expanded",
)
st.sidebar.title("Navigation")
st.sidebar.write("Use the sidebar to navigate through the app.")
st.sidebar.markdown("### πŸ“‚ Upload Data")
st.sidebar.write("Start by uploading your dataset for analysis.")
st.sidebar.markdown("### πŸ“Š Analysis & Advice")
st.sidebar.write("Get detailed insights and personalized advice.")
st.title("πŸŽ“ Student Well-being Advisor")
st.subheader("Analyze data and provide professional mental health recommendations.")
st.write("""
This app helps identify areas of concern in students' well-being and provides personalized advice based on their responses.
""")
st.markdown("## πŸ“‚ Upload Your Dataset")
uploaded_file = st.file_uploader("Upload your dataset (CSV)", type=["csv"])
if uploaded_file:
df = load_data(uploaded_file)
st.success("Dataset uploaded successfully!")
st.write("### Dataset Preview:")
st.dataframe(df.head())
required_columns = [
'anxiety_level', 'self_esteem', 'mental_health_history', 'depression',
'headache', 'blood_pressure', 'sleep_quality', 'breathing_problem',
'noise_level', 'living_conditions', 'safety', 'basic_needs',
'academic_performance', 'study_load', 'teacher_student_relationship',
'future_career_concerns', 'social_support', 'peer_pressure',
'extracurricular_activities', 'bullying', 'stress_level'
]
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"The uploaded dataset is missing the following required columns: {', '.join(missing_columns)}")
else:
if df.isnull().values.any():
st.warning("The dataset contains missing values. Rows with missing values will be skipped.")
df = df.dropna()
tab1, tab2, tab3 = st.tabs(["🏠 Home", "πŸ“Š Analysis", "πŸ“° Resources"])
with tab1:
st.write("### Welcome to the Well-being Advisor!")
st.write("""
Use the tabs to explore data, generate advice, and access mental health resources.
""")
with tab2:
st.markdown("### πŸ“Š Select a Row for Analysis")
selected_row = st.selectbox(
"Select a row (based on index) to analyze:",
options=df.index,
format_func=lambda x: f"Row {x} - Stress Level: {stress_level_to_string(df.loc[x, 'stress_level'])}, Anxiety: {df.loc[x, 'anxiety_level']}, Depression: {df.loc[x, 'depression']}",
)
row_data = df.loc[selected_row].to_dict()
st.write("### Selected User Details:")
st.json(row_data)
st.subheader("πŸ”” Health Advice Based on Articles")
advice = provide_advice_from_articles(row_data)
if advice:
for i, tip in enumerate(advice, 1):
st.write(f"πŸ“Œ **{i}.** {tip}")
else:
st.warning("No specific advice available based on this user's data.")
# Include graphs in analysis tab
plot_graphs(df)
with tab3:
st.subheader("πŸ“° Mental Health Resources")
articles = fetch_health_articles("mental health")
if articles:
for article in articles:
st.write(f"**{article['title']}**")
st.write(f"{article['description']}")
st.write(f"[Read more]({article['url']})")
else:
st.write("No articles available at the moment.")
if __name__ == "__main__":
main()