saherPervaiz commited on
Commit
23ea2ec
Β·
verified Β·
1 Parent(s): ddba63c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -34
app.py CHANGED
@@ -1,6 +1,8 @@
1
  import os
2
  import streamlit as st
3
  import pandas as pd
 
 
4
  import requests
5
 
6
  news_api_key = "fe1e6bcbbf384b3e9220a7a1138805e0" # Replace with your News API key
@@ -10,48 +12,70 @@ def load_data(file):
10
  return pd.read_csv(file)
11
 
12
  def fetch_health_articles(query):
13
- # Fetch mental health articles related to the query
14
  url = f"https://newsapi.org/v2/everything?q={query}&apiKey={news_api_key}"
15
  response = requests.get(url)
16
  if response.status_code == 200:
17
  articles = response.json().get('articles', [])
18
- return articles[:5] # Return the top 5 articles
19
  else:
20
  st.error("Failed to fetch news articles. Please check your API key or try again later.")
21
  return []
22
 
23
  def provide_advice_from_articles(data):
24
  advice = []
25
-
26
- # Use user data to fetch relevant health advice based on depression, anxiety, stress, etc.
27
  if data['depression'] > 7:
28
  advice.append("Searching for articles related to high depression...")
29
  articles = fetch_health_articles("high depression")
30
  for article in articles:
31
  advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})")
32
-
33
  elif data['anxiety_level'] > 7:
34
  advice.append("Searching for articles related to high anxiety...")
35
  articles = fetch_health_articles("high anxiety")
36
  for article in articles:
37
  advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})")
38
-
39
  elif data['stress_level'] > 7:
40
  advice.append("Searching for articles related to high stress...")
41
  articles = fetch_health_articles("high stress")
42
  for article in articles:
43
  advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})")
44
-
45
  else:
46
  advice.append("Searching for general health advice articles...")
47
  articles = fetch_health_articles("mental health")
48
  for article in articles:
49
  advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})")
50
-
51
  return advice
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  def main():
54
- # Set page config for a professional look
55
  st.set_page_config(
56
  page_title="Student Well-being Advisor",
57
  page_icon="πŸ“Š",
@@ -59,7 +83,6 @@ def main():
59
  initial_sidebar_state="expanded",
60
  )
61
 
62
- # Sidebar
63
  st.sidebar.title("Navigation")
64
  st.sidebar.write("Use the sidebar to navigate through the app.")
65
  st.sidebar.markdown("### πŸ“‚ Upload Data")
@@ -67,16 +90,12 @@ def main():
67
  st.sidebar.markdown("### πŸ“Š Analysis & Advice")
68
  st.sidebar.write("Get detailed insights and personalized advice.")
69
 
70
- # Main Content
71
  st.title("πŸŽ“ Student Well-being Advisor")
72
  st.subheader("Analyze data and provide professional mental health recommendations.")
73
- st.write(
74
- """
75
  This app helps identify areas of concern in students' well-being and provides personalized advice based on their responses.
76
- """
77
- )
78
 
79
- # File Upload
80
  st.markdown("## πŸ“‚ Upload Your Dataset")
81
  uploaded_file = st.file_uploader("Upload your dataset (CSV)", type=["csv"])
82
  if uploaded_file:
@@ -85,13 +104,12 @@ def main():
85
  st.write("### Dataset Preview:")
86
  st.dataframe(df.head())
87
 
88
- # Validate dataset columns
89
  required_columns = [
90
- 'anxiety_level', 'self_esteem', 'mental_health_history', 'depression',
91
- 'headache', 'blood_pressure', 'sleep_quality', 'breathing_problem',
92
- 'noise_level', 'living_conditions', 'safety', 'basic_needs',
93
- 'academic_performance', 'study_load', 'teacher_student_relationship',
94
- 'future_career_concerns', 'social_support', 'peer_pressure',
95
  'extracurricular_activities', 'bullying', 'stress_level'
96
  ]
97
  missing_columns = [col for col in required_columns if col not in df.columns]
@@ -99,21 +117,17 @@ def main():
99
  if missing_columns:
100
  st.error(f"The uploaded dataset is missing the following required columns: {', '.join(missing_columns)}")
101
  else:
102
- # Handle missing values in the dataset
103
  if df.isnull().values.any():
104
  st.warning("The dataset contains missing values. Rows with missing values will be skipped.")
105
  df = df.dropna()
106
 
107
- # Tabs for better organization
108
  tab1, tab2, tab3 = st.tabs(["🏠 Home", "πŸ“Š Analysis", "πŸ“° Resources"])
109
 
110
  with tab1:
111
  st.write("### Welcome to the Well-being Advisor!")
112
- st.write(
113
- """
114
  Use the tabs to explore data, generate advice, and access mental health resources.
115
- """
116
- )
117
 
118
  with tab2:
119
  st.markdown("### πŸ“Š Select a Row for Analysis")
@@ -122,15 +136,10 @@ def main():
122
  options=df.index,
123
  format_func=lambda x: f"Row {x} - Stress Level: {df.loc[x, 'stress_level']}, Anxiety: {df.loc[x, 'anxiety_level']} (Depression: {df.loc[x, 'depression']})",
124
  )
125
-
126
- # Extract data for the selected row
127
  row_data = df.loc[selected_row].to_dict()
128
-
129
- # Show extracted details
130
  st.write("### Selected User Details:")
131
  st.json(row_data)
132
 
133
- # Fetch and display health advice from articles
134
  st.subheader("πŸ”” Health Advice Based on Articles")
135
  advice = provide_advice_from_articles(row_data)
136
  if advice:
@@ -139,8 +148,10 @@ def main():
139
  else:
140
  st.warning("No specific advice available based on this user's data.")
141
 
 
 
 
142
  with tab3:
143
- # Fetch and display mental health articles
144
  st.subheader("πŸ“° Mental Health Resources")
145
  articles = fetch_health_articles("mental health")
146
  if articles:
 
1
  import os
2
  import streamlit as st
3
  import pandas as pd
4
+ import matplotlib.pyplot as plt
5
+ import seaborn as sns
6
  import requests
7
 
8
  news_api_key = "fe1e6bcbbf384b3e9220a7a1138805e0" # Replace with your News API key
 
12
  return pd.read_csv(file)
13
 
14
  def fetch_health_articles(query):
 
15
  url = f"https://newsapi.org/v2/everything?q={query}&apiKey={news_api_key}"
16
  response = requests.get(url)
17
  if response.status_code == 200:
18
  articles = response.json().get('articles', [])
19
+ return articles[:5]
20
  else:
21
  st.error("Failed to fetch news articles. Please check your API key or try again later.")
22
  return []
23
 
24
  def provide_advice_from_articles(data):
25
  advice = []
 
 
26
  if data['depression'] > 7:
27
  advice.append("Searching for articles related to high depression...")
28
  articles = fetch_health_articles("high depression")
29
  for article in articles:
30
  advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})")
 
31
  elif data['anxiety_level'] > 7:
32
  advice.append("Searching for articles related to high anxiety...")
33
  articles = fetch_health_articles("high anxiety")
34
  for article in articles:
35
  advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})")
 
36
  elif data['stress_level'] > 7:
37
  advice.append("Searching for articles related to high stress...")
38
  articles = fetch_health_articles("high stress")
39
  for article in articles:
40
  advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})")
 
41
  else:
42
  advice.append("Searching for general health advice articles...")
43
  articles = fetch_health_articles("mental health")
44
  for article in articles:
45
  advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})")
 
46
  return advice
47
 
48
+ def plot_graphs(data):
49
+ # Create subplots for visualization
50
+ st.markdown("### πŸ“Š Data Visualizations")
51
+ st.write("Explore key insights through visualizations.")
52
+
53
+ # Histogram for depression
54
+ st.markdown("#### Histogram of Depression Levels")
55
+ fig, ax = plt.subplots(figsize=(6, 4))
56
+ ax.hist(data['depression'], bins=20, color='skyblue', edgecolor='black')
57
+ ax.set_title("Histogram of Depression Levels")
58
+ ax.set_xlabel("Depression Level")
59
+ ax.set_ylabel("Frequency")
60
+ st.pyplot(fig)
61
+
62
+ # Scatter plot for anxiety vs. depression
63
+ st.markdown("#### Scatter Plot: Anxiety vs Depression")
64
+ fig, ax = plt.subplots(figsize=(6, 4))
65
+ sns.scatterplot(x=data['anxiety_level'], y=data['depression'], ax=ax, color='blue')
66
+ ax.set_title("Anxiety Level vs Depression")
67
+ ax.set_xlabel("Anxiety Level")
68
+ ax.set_ylabel("Depression")
69
+ st.pyplot(fig)
70
+
71
+ # Correlation heatmap
72
+ st.markdown("#### Correlation Heatmap")
73
+ fig, ax = plt.subplots(figsize=(10, 8))
74
+ sns.heatmap(data.corr(), annot=True, cmap="coolwarm", ax=ax)
75
+ ax.set_title("Correlation Heatmap")
76
+ st.pyplot(fig)
77
+
78
  def main():
 
79
  st.set_page_config(
80
  page_title="Student Well-being Advisor",
81
  page_icon="πŸ“Š",
 
83
  initial_sidebar_state="expanded",
84
  )
85
 
 
86
  st.sidebar.title("Navigation")
87
  st.sidebar.write("Use the sidebar to navigate through the app.")
88
  st.sidebar.markdown("### πŸ“‚ Upload Data")
 
90
  st.sidebar.markdown("### πŸ“Š Analysis & Advice")
91
  st.sidebar.write("Get detailed insights and personalized advice.")
92
 
 
93
  st.title("πŸŽ“ Student Well-being Advisor")
94
  st.subheader("Analyze data and provide professional mental health recommendations.")
95
+ st.write("""
 
96
  This app helps identify areas of concern in students' well-being and provides personalized advice based on their responses.
97
+ """)
 
98
 
 
99
  st.markdown("## πŸ“‚ Upload Your Dataset")
100
  uploaded_file = st.file_uploader("Upload your dataset (CSV)", type=["csv"])
101
  if uploaded_file:
 
104
  st.write("### Dataset Preview:")
105
  st.dataframe(df.head())
106
 
 
107
  required_columns = [
108
+ 'anxiety_level', 'self_esteem', 'mental_health_history', 'depression',
109
+ 'headache', 'blood_pressure', 'sleep_quality', 'breathing_problem',
110
+ 'noise_level', 'living_conditions', 'safety', 'basic_needs',
111
+ 'academic_performance', 'study_load', 'teacher_student_relationship',
112
+ 'future_career_concerns', 'social_support', 'peer_pressure',
113
  'extracurricular_activities', 'bullying', 'stress_level'
114
  ]
115
  missing_columns = [col for col in required_columns if col not in df.columns]
 
117
  if missing_columns:
118
  st.error(f"The uploaded dataset is missing the following required columns: {', '.join(missing_columns)}")
119
  else:
 
120
  if df.isnull().values.any():
121
  st.warning("The dataset contains missing values. Rows with missing values will be skipped.")
122
  df = df.dropna()
123
 
 
124
  tab1, tab2, tab3 = st.tabs(["🏠 Home", "πŸ“Š Analysis", "πŸ“° Resources"])
125
 
126
  with tab1:
127
  st.write("### Welcome to the Well-being Advisor!")
128
+ st.write("""
 
129
  Use the tabs to explore data, generate advice, and access mental health resources.
130
+ """)
 
131
 
132
  with tab2:
133
  st.markdown("### πŸ“Š Select a Row for Analysis")
 
136
  options=df.index,
137
  format_func=lambda x: f"Row {x} - Stress Level: {df.loc[x, 'stress_level']}, Anxiety: {df.loc[x, 'anxiety_level']} (Depression: {df.loc[x, 'depression']})",
138
  )
 
 
139
  row_data = df.loc[selected_row].to_dict()
 
 
140
  st.write("### Selected User Details:")
141
  st.json(row_data)
142
 
 
143
  st.subheader("πŸ”” Health Advice Based on Articles")
144
  advice = provide_advice_from_articles(row_data)
145
  if advice:
 
148
  else:
149
  st.warning("No specific advice available based on this user's data.")
150
 
151
+ # Include graphs in analysis tab
152
+ plot_graphs(df)
153
+
154
  with tab3:
 
155
  st.subheader("πŸ“° Mental Health Resources")
156
  articles = fetch_health_articles("mental health")
157
  if articles: