sahilvishwa2108's picture
Deploy optimized lightweight oil spill detection API - Runtime model download, memory efficient
ada534f
# Lightweight Dockerfile for HuggingFace Spaces
FROM python:3.10-slim
WORKDIR /app
# Install minimal system dependencies
RUN apt-get update && apt-get install -y \
libgl1-mesa-glx \
libglib2.0-0 \
curl \
&& rm -rf /var/lib/apt/lists/* \
&& apt-get clean
# Copy and install Python dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir --upgrade pip \
&& pip install --no-cache-dir -r requirements.txt \
&& pip cache purge
# Copy application files (models excluded via .dockerignore)
COPY main.py .
COPY download_models.py .
COPY README.md .
# Create necessary directories
RUN mkdir -p models uploads
# Download models at runtime (smaller build)
# Models will be downloaded when the app starts
# Set environment variables for HuggingFace Spaces
ENV PYTHONUNBUFFERED=1
ENV GRADIO_SERVER_NAME=0.0.0.0
ENV GRADIO_SERVER_PORT=7860
# Expose HuggingFace Spaces port
EXPOSE 7860
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=120s --retries=3 \
CMD curl -f http://localhost:7860/health || exit 1
# Run with model download and reduced memory usage
CMD ["sh", "-c", "python download_models.py && uvicorn main:app --host 0.0.0.0 --port 7860 --workers 1"]