|
import cv2 |
|
from detectron2 import model_zoo |
|
from detectron2.config import get_cfg, CfgNode |
|
from detectron2.engine import DefaultPredictor |
|
from detectron2.structures import Instances |
|
from detectron2.utils.visualizer import Visualizer |
|
from detectron2.data import MetadataCatalog |
|
from detectron2.data.datasets import load_coco_json |
|
|
|
DEVICE = 'cpu' |
|
|
|
class Predictor(): |
|
config: CfgNode |
|
|
|
def __init__(self) -> None: |
|
|
|
self.config = self._init_custom_config() |
|
|
|
def _init_custom_config(self): |
|
cfg = get_cfg() |
|
|
|
|
|
cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml")) |
|
cfg.MODEL.DEVICE = DEVICE |
|
|
|
load_coco_json('./test/_annotations.coco.json', './test', 'my_dataset_test') |
|
test_metadata = MetadataCatalog.get("my_dataset_test") |
|
print(test_metadata) |
|
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(test_metadata.thing_classes) |
|
cfg.TEST.DETECTIONS_PER_IMAGE = 1000 |
|
|
|
return cfg |
|
|
|
def predict(self, model: str, img_path: str, score_min_percent: int): |
|
|
|
|
|
self.config.MODEL.WEIGHTS = f"models/{model}" |
|
self.config.MODEL.ROI_HEADS.SCORE_THRESH_TEST = score_min_percent / 100 |
|
|
|
|
|
predictor = DefaultPredictor(self.config) |
|
|
|
|
|
img = cv2.imread(img_path) |
|
|
|
outputs: Instances = predictor(img)["instances"] |
|
test_metadata = MetadataCatalog.get("my_dataset_test") |
|
|
|
v = Visualizer(img[:, :, ::-1], test_metadata, scale=1.0) |
|
out = v.draw_instance_predictions(outputs.to(DEVICE)) |
|
count = len(outputs) |
|
|
|
|
|
return out.get_image(), count |
|
|