Spaces:
Sleeping
Sleeping
File size: 17,022 Bytes
6376749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
import os
import sys
from typing import List
import fire
import torch
import argparse
import transformers
from datasets import load_dataset
from typing import List, Optional, Union
from tqdm import tqdm
import sys
from functools import partial, reduce
sys.path.append("../")
from svft.svft_layers import LinearWithSVFT, create_and_replace_modules, get_target_modules_list, replace_svft_with_fused_linear
"""
Unused imports:
import torch.nn as nn
import bitsandbytes as bnb
"""
sys.path.append(os.path.join(os.getcwd(), "peft/src/"))
from peft import ( # noqa: E402
LoraConfig, BOFTConfig, VeraConfig,
PrefixTuningConfig,
get_peft_model,
get_peft_model_state_dict,
set_peft_model_state_dict,
)
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, AutoModel # noqa: F402
def train(
# model/data params
base_model: str = "", # the only required argument
data_path: str = "yahma/alpaca-cleaned",
output_dir: str = "./lora-alpaca",
adapter_name: str = "lora",
load_8bit : bool = False,
# training hyperparams
batch_size: int = 128,
micro_batch_size: int = 4,
num_epochs: int = 3,
learning_rate: float = 3e-4,
cutoff_len: int = 256,
val_set_size: int = 2000,
use_gradient_checkpointing: bool = False,
eval_step: int = 200,
save_step: int = 200,
# lora hyperparams
lora_r: int = None,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = None,
# bottleneck adapter hyperparams
bottleneck_size: int = 256,
non_linearity: str = "tanh",
adapter_dropout: float = 0.0,
use_parallel_adapter: bool = False,
use_adapterp: bool = False,
target_modules: List[str] = None,
scaling: Union[float, str] = 1.0,
# prefix tuning hyperparams
num_virtual_tokens: int = 30,
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
group_by_length: bool = False, # faster, but produces an odd training loss curve
# wandb params
wandb_project: str = "",
wandb_run_name: str = "",
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
off_diag: int = 0,
pattern: str = "banded",
fill_orthonormal: bool = False,
):
print(
f"Finetuning model with params:\n"
f"base_model: {base_model}\n"
f"data_path: {data_path}\n"
f"output_dir: {output_dir}\n"
f"batch_size: {batch_size}\n"
f"micro_batch_size: {micro_batch_size}\n"
f"num_epochs: {num_epochs}\n"
f"learning_rate: {learning_rate}\n"
f"cutoff_len: {cutoff_len}\n"
f"val_set_size: {val_set_size}\n"
f"use_gradient_checkpointing: {use_gradient_checkpointing}\n"
f"lora_r: {lora_r}\n"
f"lora_alpha: {lora_alpha}\n"
f"lora_dropout: {lora_dropout}\n"
f"lora_target_modules: {lora_target_modules}\n"
f"bottleneck_size: {bottleneck_size}\n"
f"non_linearity: {non_linearity}\n"
f"adapter_dropout: {adapter_dropout}\n"
f"use_parallel_adapter: {use_parallel_adapter}\n"
f"use_adapterp: {use_adapterp}\n"
f"train_on_inputs: {train_on_inputs}\n"
f"scaling: {scaling}\n"
f"adapter_name: {adapter_name}\n"
f"target_modules: {target_modules}\n"
f"group_by_length: {group_by_length}\n"
f"wandb_project: {wandb_project}\n"
f"wandb_run_name: {wandb_run_name}\n"
f"wandb_watch: {wandb_watch}\n"
f"wandb_log_model: {wandb_log_model}\n"
f"resume_from_checkpoint: {resume_from_checkpoint}\n"
)
print(base_model)
# assert (
# base_model
# ), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
gradient_accumulation_steps = batch_size // micro_batch_size
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
# Check if parameter passed or if set within environ
use_wandb = len(wandb_project) > 0 or (
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
)
# Only overwrite environ if wandb param passed
if len(wandb_project) > 0:
os.environ["WANDB_PROJECT"] = "CommonsenseReasoning"
if len(wandb_watch) > 0:
os.environ["WANDB_WATCH"] = "all"
if len(wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = False
if load_8bit:
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map=device_map,
trust_remote_code=True,
)
else:
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=False,
torch_dtype=torch.float32,
device_map={"": int(os.environ.get("LOCAL_RANK") or 0)},
trust_remote_code=True,
#revision="step143000",
)
if model.config.model_type == "llama":
# Due to the name of transformers' LlamaTokenizer, we have to do this
tokenizer = LlamaTokenizer.from_pretrained(base_model)
else:
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
tokenizer.padding_side = "left" # Allow batched inference
def tokenize(prompt, add_eos_token=True):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
if "chatglm" not in base_model:
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
if "chatglm" in base_model:
return {"input_ids": result["input_ids"], "labels": result["labels"]}
else:
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = generate_prompt(data_point)
tokenized_full_prompt = tokenize(full_prompt)
if not train_on_inputs:
user_prompt = generate_prompt({**data_point, "output": ""})
tokenized_user_prompt = tokenize(user_prompt, add_eos_token=False)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
if adapter_name == "lora":
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
elif adapter_name == "dora":
config = LoraConfig(
use_dora=True,
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
elif adapter_name == "boft":
config = BOFTConfig(
boft_block_size=8,
boft_n_butterfly_factor=2,
target_modules=lora_target_modules,
boft_dropout=0.05,
bias="boft_only",
)
elif adapter_name == "boft_r1":
config = BOFTConfig(
boft_block_size=1,
boft_n_butterfly_factor=1,
target_modules=lora_target_modules,
boft_dropout=0.05,
bias="boft_only",
)
elif adapter_name == "vera":
config = VeraConfig(r=lora_r, target_modules=lora_target_modules)
if adapter_name == 'svft':
# for SVFT turn off gradient requirement for all layers
# PEFT library handles this internally
for param in model.parameters():
param.requires_grad = False
print(f"Target Modules: {lora_target_modules}")
assign_svft_layer = partial(LinearWithSVFT,
off_diag=off_diag,
pattern=pattern,
rank=lora_r,
fill_orthonormal=fill_orthonormal)
create_and_replace_modules(model, get_target_modules_list(model, lora_target_modules), assign_svft_layer)
elif adapter_name == "full_ft":
pass
else:
# for baseline peft models
model = get_peft_model(model, config)
if adapter_name == "prefix-tuning":
model.to('cuda')
if data_path.endswith(".json"): # todo: support jsonl
data = load_dataset("json", data_files=data_path)
else:
data = load_dataset(data_path)
print(f"Trainable Parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
print(f"Output Dir: {output_dir}")
if val_set_size > 0:
train_val = data["train"].train_test_split(
test_size=val_set_size, shuffle=True, seed=42
)
train_data = (
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
)
val_data = (
train_val["test"].shuffle().map(generate_and_tokenize_prompt)
)
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = None
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
bf16=True,
logging_steps=10,
optim="adamw_torch",
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=eval_step if val_set_size > 0 else None,
save_steps=save_step,
output_dir=output_dir,
save_total_limit=3,
load_best_model_at_end=False if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
report_to="wandb" if use_wandb else None,
run_name=wandb_run_name if use_wandb else None,
#deepspeed="deepspeed.json"
),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
model.config.use_cache = False
if adapter_name not in ['boft', 'svft']:
model = model.bfloat16()
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
model.generation_config.temperature = 1.0
model.generation_config.top_p = 1.0
if adapter_name == 'svft':
replace_svft_with_fused_linear(model, get_target_modules_list(model, lora_target_modules))
elif adapter_name=="full_ft":
pass
else:
model = model.merge_and_unload()
for param in model.parameters():
param.data = param.data.contiguous()
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
print(
"\n If there's a warning about missing keys above, please disregard :)"
)
def generate_prompt(data_point):
# sorry about the formatting disaster gotta move fast
if data_point["input"]:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Input:
{data_point["input"]}
### Response:
{data_point["output"]}""" # noqa: E501
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Response:
{data_point["output"]}""" # noqa: E501
def parse_args():
parser = argparse.ArgumentParser(description='Train a model')
# model/data params
parser.add_argument('--base_model', type=str, required=True, help='Base model')
parser.add_argument('--data_path', type=str, default='yahma/alpaca-cleaned', help='Data path')
parser.add_argument('--output_dir', type=str, default='./lora-alpaca', help='Output directory')
parser.add_argument('--adapter_name', type=str, default='lora', help='Adapter name')
parser.add_argument('--load_8bit', action='store_true', help='Load 8-bit')
# training hyperparams
parser.add_argument('--batch_size', type=int, default=128, help='Batch size')
parser.add_argument('--micro_batch_size', type=int, default=4, help='Micro batch size')
parser.add_argument('--num_epochs', type=int, default=3, help='Number of epochs')
parser.add_argument('--learning_rate', type=float, default=3e-4, help='Learning rate')
parser.add_argument('--cutoff_len', type=int, default=256, help='Cutoff length')
parser.add_argument('--val_set_size', type=int, default=2000, help='Validation set size')
parser.add_argument('--use_gradient_checkpointing', action='store_true', help='Use gradient checkpointing')
parser.add_argument('--eval_step', type=int, default=200, help='Evaluation step')
parser.add_argument('--save_step', type=int, default=200, help='Save step')
# lora hyperparams
parser.add_argument('--lora_r', type=int, default=8, help='Lora r')
parser.add_argument('--lora_alpha', type=int, default=16, help='Lora alpha')
parser.add_argument('--lora_dropout', type=float, default=0.05, help='Lora dropout')
parser.add_argument('--lora_target_modules', nargs='+', help='Lora target modules')
# bottleneck adapter hyperparams
parser.add_argument('--bottleneck_size', type=int, default=256, help='Bottleneck size')
parser.add_argument('--non_linearity', type=str, default='tanh', help='Non-linearity')
parser.add_argument('--adapter_dropout', type=float, default=0.0, help='Adapter dropout')
parser.add_argument('--use_parallel_adapter', action='store_true', help='Use parallel adapter')
parser.add_argument('--use_adapterp', action='store_true', help='Use adapterp')
parser.add_argument('--target_modules', nargs='+', help='Target modules')
parser.add_argument('--scaling', type=Union[float, str], default=1.0, help='Scaling')
# prefix tuning hyperparams
parser.add_argument('--num_virtual_tokens', type=int, default=30, help='Number of virtual tokens')
# llm hyperparams
parser.add_argument('--train_on_inputs', action='store_true', help='Train on inputs')
parser.add_argument('--group_by_length', action='store_true', help='Group by length')
# wandb params
parser.add_argument('--wandb_project', type=str, default='', help='Wandb project')
parser.add_argument('--wandb_run_name', type=str, default='', help='Wandb run name')
parser.add_argument('--wandb_watch', type=str, default='', help='Wandb watch')
parser.add_argument('--wandb_log_model', type=str, default='', help='Wandb log model')
parser.add_argument('--resume_from_checkpoint', type=str, help='Resume from checkpoint')
return parser.parse_args()
if __name__ == "__main__":
fire.Fire(train)
# args = parse_args()
# train(**vars(args)) |