File size: 17,022 Bytes
6376749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import os
import sys
from typing import List

import fire
import torch
import argparse
import transformers
from datasets import load_dataset
from typing import List, Optional, Union

from tqdm import tqdm
import sys
from functools import partial, reduce
sys.path.append("../")
from svft.svft_layers import LinearWithSVFT, create_and_replace_modules, get_target_modules_list, replace_svft_with_fused_linear

"""
Unused imports:
import torch.nn as nn
import bitsandbytes as bnb
"""
sys.path.append(os.path.join(os.getcwd(), "peft/src/"))

from peft import (  # noqa: E402
    LoraConfig, BOFTConfig, VeraConfig, 
    PrefixTuningConfig,
    get_peft_model,
    get_peft_model_state_dict,
    set_peft_model_state_dict,
)
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, AutoModel  # noqa: F402


def train(
        # model/data params
        base_model: str = "",  # the only required argument
        data_path: str = "yahma/alpaca-cleaned",
        output_dir: str = "./lora-alpaca",
        adapter_name: str = "lora",
        load_8bit : bool = False,
        # training hyperparams
        batch_size: int = 128,
        micro_batch_size: int = 4,
        num_epochs: int = 3,
        learning_rate: float = 3e-4,
        cutoff_len: int = 256,
        val_set_size: int = 2000,
        use_gradient_checkpointing: bool = False,
        eval_step: int = 200,
        save_step: int = 200,
        # lora hyperparams
        lora_r: int = None,
        lora_alpha: int = 16,
        lora_dropout: float = 0.05,
        lora_target_modules: List[str] = None,
        # bottleneck adapter hyperparams
        bottleneck_size: int = 256,
        non_linearity: str = "tanh",
        adapter_dropout: float = 0.0,
        use_parallel_adapter: bool = False,
        use_adapterp: bool = False,
        target_modules: List[str] = None,
        scaling: Union[float, str] = 1.0,
        # prefix tuning hyperparams
        num_virtual_tokens: int = 30,
        # llm hyperparams
        train_on_inputs: bool = True,  # if False, masks out inputs in loss
        group_by_length: bool = False,  # faster, but produces an odd training loss curve
        # wandb params
        wandb_project: str = "",
        wandb_run_name: str = "",
        wandb_watch: str = "",  # options: false | gradients | all
        wandb_log_model: str = "",  # options: false | true
        resume_from_checkpoint: str = None,  # either training checkpoint or final adapter
        off_diag: int = 0,
        pattern: str = "banded",
        fill_orthonormal: bool = False,
):
    print(
        f"Finetuning model with params:\n"
        f"base_model: {base_model}\n"
        f"data_path: {data_path}\n"
        f"output_dir: {output_dir}\n"
        f"batch_size: {batch_size}\n"
        f"micro_batch_size: {micro_batch_size}\n"
        f"num_epochs: {num_epochs}\n"
        f"learning_rate: {learning_rate}\n"
        f"cutoff_len: {cutoff_len}\n"
        f"val_set_size: {val_set_size}\n"
        f"use_gradient_checkpointing: {use_gradient_checkpointing}\n"
        f"lora_r: {lora_r}\n"
        f"lora_alpha: {lora_alpha}\n"
        f"lora_dropout: {lora_dropout}\n"
        f"lora_target_modules: {lora_target_modules}\n"
        f"bottleneck_size: {bottleneck_size}\n"
        f"non_linearity: {non_linearity}\n"
        f"adapter_dropout: {adapter_dropout}\n"
        f"use_parallel_adapter: {use_parallel_adapter}\n"
        f"use_adapterp: {use_adapterp}\n"
        f"train_on_inputs: {train_on_inputs}\n"
        f"scaling: {scaling}\n"
        f"adapter_name: {adapter_name}\n"
        f"target_modules: {target_modules}\n"
        f"group_by_length: {group_by_length}\n"
        f"wandb_project: {wandb_project}\n"
        f"wandb_run_name: {wandb_run_name}\n"
        f"wandb_watch: {wandb_watch}\n"
        f"wandb_log_model: {wandb_log_model}\n"
        f"resume_from_checkpoint: {resume_from_checkpoint}\n"
    )

    print(base_model)

    # assert (
    #     base_model
    # ), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
    gradient_accumulation_steps = batch_size // micro_batch_size

    device_map = "auto"
    world_size = int(os.environ.get("WORLD_SIZE", 1))
    ddp = world_size != 1
    if ddp:
        device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
        gradient_accumulation_steps = gradient_accumulation_steps // world_size

    # Check if parameter passed or if set within environ
    use_wandb = len(wandb_project) > 0 or (
            "WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
    )
    # Only overwrite environ if wandb param passed
    if len(wandb_project) > 0:
        os.environ["WANDB_PROJECT"] = "CommonsenseReasoning"
    if len(wandb_watch) > 0:
        os.environ["WANDB_WATCH"] = "all"
    if len(wandb_log_model) > 0:
        os.environ["WANDB_LOG_MODEL"] = False

    if load_8bit:
        model = AutoModelForCausalLM.from_pretrained(
            base_model,
            load_in_8bit=load_8bit,
            torch_dtype=torch.float16,
            device_map=device_map,
            trust_remote_code=True,
        )
    else:
        model = AutoModelForCausalLM.from_pretrained(
            base_model,
            load_in_8bit=False,
            torch_dtype=torch.float32,
            device_map={"": int(os.environ.get("LOCAL_RANK") or 0)},
            trust_remote_code=True,
            #revision="step143000",
        )

    if model.config.model_type == "llama":
        # Due to the name of transformers' LlamaTokenizer, we have to do this
        tokenizer = LlamaTokenizer.from_pretrained(base_model)
    else:
        tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)

    tokenizer.pad_token_id = (
        0  # unk. we want this to be different from the eos token
    )
    tokenizer.padding_side = "left"  # Allow batched inference

    def tokenize(prompt, add_eos_token=True):
        # there's probably a way to do this with the tokenizer settings
        # but again, gotta move fast
        result = tokenizer(
            prompt,
            truncation=True,
            max_length=cutoff_len,
            padding=False,
            return_tensors=None,
        )
        if (
                result["input_ids"][-1] != tokenizer.eos_token_id
                and len(result["input_ids"]) < cutoff_len
                and add_eos_token
        ):
            result["input_ids"].append(tokenizer.eos_token_id)
            if "chatglm" not in base_model:
                result["attention_mask"].append(1)

        result["labels"] = result["input_ids"].copy()

        if "chatglm" in base_model:
            return {"input_ids": result["input_ids"], "labels": result["labels"]}
        else:
            return result

    def generate_and_tokenize_prompt(data_point):
        full_prompt = generate_prompt(data_point)
        tokenized_full_prompt = tokenize(full_prompt)
        if not train_on_inputs:
            user_prompt = generate_prompt({**data_point, "output": ""})
            tokenized_user_prompt = tokenize(user_prompt, add_eos_token=False)
            user_prompt_len = len(tokenized_user_prompt["input_ids"])

            tokenized_full_prompt["labels"] = [
                                                  -100
                                              ] * user_prompt_len + tokenized_full_prompt["labels"][
                                                                    user_prompt_len:
                                                                    ]  # could be sped up, probably
        return tokenized_full_prompt

    if adapter_name == "lora":
        config = LoraConfig(
            r=lora_r,
            lora_alpha=lora_alpha,
            target_modules=lora_target_modules,
            lora_dropout=lora_dropout,
            bias="none",
            task_type="CAUSAL_LM",
        )

    elif adapter_name == "dora":
        config = LoraConfig(
            use_dora=True,
            r=lora_r,
            lora_alpha=lora_alpha,
            target_modules=lora_target_modules,
            lora_dropout=lora_dropout,
            bias="none",
            task_type="CAUSAL_LM",
        ) 
    
    elif adapter_name == "boft":
        config = BOFTConfig(
            boft_block_size=8,
            boft_n_butterfly_factor=2,
            target_modules=lora_target_modules,
            boft_dropout=0.05,
            bias="boft_only",
        )

    elif adapter_name == "boft_r1":
        config = BOFTConfig(
            boft_block_size=1,
            boft_n_butterfly_factor=1,
            target_modules=lora_target_modules,
            boft_dropout=0.05,
            bias="boft_only",
        )

    elif adapter_name == "vera":
        config = VeraConfig(r=lora_r, target_modules=lora_target_modules)

    if adapter_name == 'svft':
        # for SVFT turn off gradient requirement for all layers
        # PEFT library handles this internally
        for param in model.parameters():
            param.requires_grad = False

        print(f"Target Modules: {lora_target_modules}")
        assign_svft_layer = partial(LinearWithSVFT, 
                                    off_diag=off_diag, 
                                    pattern=pattern, 
                                    rank=lora_r, 
                                    fill_orthonormal=fill_orthonormal)
        
        create_and_replace_modules(model, get_target_modules_list(model, lora_target_modules), assign_svft_layer)

    elif adapter_name == "full_ft":
        pass
    else:
        # for baseline peft models    
        model = get_peft_model(model, config)

    if adapter_name == "prefix-tuning":
        model.to('cuda')

    if data_path.endswith(".json"):  # todo: support jsonl
        data = load_dataset("json", data_files=data_path)
    else:
        data = load_dataset(data_path)

    print(f"Trainable Parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
    print(f"Output Dir: {output_dir}")

    if val_set_size > 0:
        train_val = data["train"].train_test_split(
            test_size=val_set_size, shuffle=True, seed=42
        )
        train_data = (
            train_val["train"].shuffle().map(generate_and_tokenize_prompt)
        )
        val_data = (
            train_val["test"].shuffle().map(generate_and_tokenize_prompt)
        )
    else:
        train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
        val_data = None

    if not ddp and torch.cuda.device_count() > 1:
        # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
        model.is_parallelizable = True
        model.model_parallel = True

    trainer = transformers.Trainer(
        model=model,
        train_dataset=train_data,
        eval_dataset=val_data,
        args=transformers.TrainingArguments(
            per_device_train_batch_size=micro_batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            warmup_steps=100,
            num_train_epochs=num_epochs,
            learning_rate=learning_rate,
            bf16=True,
            logging_steps=10,
            optim="adamw_torch",
            evaluation_strategy="steps" if val_set_size > 0 else "no",
            save_strategy="steps",
            eval_steps=eval_step if val_set_size > 0 else None,
            save_steps=save_step,
            output_dir=output_dir,
            save_total_limit=3,
            load_best_model_at_end=False if val_set_size > 0 else False,
            ddp_find_unused_parameters=False if ddp else None,
            group_by_length=group_by_length,
            report_to="wandb" if use_wandb else None,
            run_name=wandb_run_name if use_wandb else None,
            #deepspeed="deepspeed.json"
        ),
        data_collator=transformers.DataCollatorForSeq2Seq(
            tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
        ),
    )
    model.config.use_cache = False

    if adapter_name not in ['boft', 'svft']:
        model = model.bfloat16()

    trainer.train(resume_from_checkpoint=resume_from_checkpoint)

    model.generation_config.temperature = 1.0
    model.generation_config.top_p = 1.0
    
    if adapter_name == 'svft':
        replace_svft_with_fused_linear(model, get_target_modules_list(model, lora_target_modules))
    elif adapter_name=="full_ft":
        pass
    else:
        model = model.merge_and_unload()

    for param in model.parameters():
        param.data = param.data.contiguous()
    model.save_pretrained(output_dir)
    tokenizer.save_pretrained(output_dir)

    print(
        "\n If there's a warning about missing keys above, please disregard :)"
    )


def generate_prompt(data_point):
    # sorry about the formatting disaster gotta move fast
    if data_point["input"]:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. 

                ### Instruction:
                {data_point["instruction"]}
                
                ### Input:
                {data_point["input"]}
                
                ### Response:
                {data_point["output"]}""" # noqa: E501
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.  

                ### Instruction:
                {data_point["instruction"]}
                
                ### Response:
                {data_point["output"]}""" # noqa: E501


def parse_args():
    parser = argparse.ArgumentParser(description='Train a model')
    
    # model/data params
    parser.add_argument('--base_model', type=str, required=True, help='Base model')
    parser.add_argument('--data_path', type=str, default='yahma/alpaca-cleaned', help='Data path')
    parser.add_argument('--output_dir', type=str, default='./lora-alpaca', help='Output directory')
    parser.add_argument('--adapter_name', type=str, default='lora', help='Adapter name')
    parser.add_argument('--load_8bit', action='store_true', help='Load 8-bit')
    
    # training hyperparams
    parser.add_argument('--batch_size', type=int, default=128, help='Batch size')
    parser.add_argument('--micro_batch_size', type=int, default=4, help='Micro batch size')
    parser.add_argument('--num_epochs', type=int, default=3, help='Number of epochs')
    parser.add_argument('--learning_rate', type=float, default=3e-4, help='Learning rate')
    parser.add_argument('--cutoff_len', type=int, default=256, help='Cutoff length')
    parser.add_argument('--val_set_size', type=int, default=2000, help='Validation set size')
    parser.add_argument('--use_gradient_checkpointing', action='store_true', help='Use gradient checkpointing')
    parser.add_argument('--eval_step', type=int, default=200, help='Evaluation step')
    parser.add_argument('--save_step', type=int, default=200, help='Save step')
    
    # lora hyperparams
    parser.add_argument('--lora_r', type=int, default=8, help='Lora r')
    parser.add_argument('--lora_alpha', type=int, default=16, help='Lora alpha')
    parser.add_argument('--lora_dropout', type=float, default=0.05, help='Lora dropout')
    parser.add_argument('--lora_target_modules', nargs='+', help='Lora target modules')
    
    # bottleneck adapter hyperparams
    parser.add_argument('--bottleneck_size', type=int, default=256, help='Bottleneck size')
    parser.add_argument('--non_linearity', type=str, default='tanh', help='Non-linearity')
    parser.add_argument('--adapter_dropout', type=float, default=0.0, help='Adapter dropout')
    parser.add_argument('--use_parallel_adapter', action='store_true', help='Use parallel adapter')
    parser.add_argument('--use_adapterp', action='store_true', help='Use adapterp')
    parser.add_argument('--target_modules', nargs='+', help='Target modules')
    parser.add_argument('--scaling', type=Union[float, str], default=1.0, help='Scaling')
    
    # prefix tuning hyperparams
    parser.add_argument('--num_virtual_tokens', type=int, default=30, help='Number of virtual tokens')
    
    # llm hyperparams
    parser.add_argument('--train_on_inputs', action='store_true', help='Train on inputs')
    parser.add_argument('--group_by_length', action='store_true', help='Group by length')
    
    # wandb params
    parser.add_argument('--wandb_project', type=str, default='', help='Wandb project')
    parser.add_argument('--wandb_run_name', type=str, default='', help='Wandb run name')
    parser.add_argument('--wandb_watch', type=str, default='', help='Wandb watch')
    parser.add_argument('--wandb_log_model', type=str, default='', help='Wandb log model')
    parser.add_argument('--resume_from_checkpoint', type=str, help='Resume from checkpoint')

    return parser.parse_args()

if __name__ == "__main__":
    fire.Fire(train)

    # args = parse_args()
    # train(**vars(args))