Spaces:
Sleeping
Sleeping
File size: 16,475 Bytes
6376749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import random
from typing import Literal, List
from collections import Counter
from dataclasses import dataclass, field
from functools import partial
import torch
import evaluate
import numpy as np
from torch import optim
from datasets import load_dataset
import transformers
from transformers import (
Trainer,
TrainingArguments,
HfArgumentParser,
AutoImageProcessor,
AutoModelForImageClassification,
get_cosine_schedule_with_warmup,
get_linear_schedule_with_warmup,
)
from torchvision.transforms import (
Compose,
Normalize,
Resize,
ToTensor,
)
from peft import get_peft_model, VeraConfig, BOFTConfig, LoraConfig
import sys
sys.path.append("../")
from svft.svft_layers import *
##########################
# Metrics
##########################
metric = evaluate.load("accuracy")
def compute_metrics(eval_pred):
predictions = np.argmax(eval_pred.predictions, axis=1)
return metric.compute(predictions=predictions, references=eval_pred.label_ids)
##########################
# Utils
##########################
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def reset_seed(SEED=0):
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
transformers.set_seed(SEED)
def get_trainable_params_dict(model):
total_p = sum(p.numel() for p in model.parameters())
trainable_p = sum(p.numel() for p in model.parameters() if p.requires_grad)
clf_trainable_p = sum(
p.numel()
for n, p in model.named_parameters()
if p.requires_grad and "classifier" in n
)
other_p = trainable_p - clf_trainable_p
return {
"total_p": total_p,
"trainable_p": trainable_p,
"clf_trainable_p": clf_trainable_p,
"other_p": other_p,
}
def print_trainable_parameters(model):
params_dict = get_trainable_params_dict(model)
total_p = params_dict["total_p"]
trainable_p = params_dict["trainable_p"]
clf_trainable_p = params_dict["clf_trainable_p"]
other_p = params_dict["other_p"]
print(
f"Total params: {total_p} | Trainable params: {trainable_p} | Trainable%: {trainable_p/total_p*100:.2f}%"
)
print(
f"Clf Trainable params: {clf_trainable_p} | Clf Trainable%: {clf_trainable_p/total_p*100:.2f}%"
)
print(
f"FT Trainable params: {other_p} | FT Trainable%: {other_p/total_p*100:.2f}%"
)
print()
##########################
# Dataset Utilities
##########################
label_key = "label"
image_path_key = "image"
def collate_fn(examples):
pixel_values = torch.stack(
[torch.Tensor(example["pixel_values"]) for example in examples]
)
labels = torch.tensor([example[label_key] for example in examples])
return {"pixel_values": pixel_values, "labels": labels}
def preprocess(example_batch, transform_fn):
example_batch["pixel_values"] = [
transform_fn(image.convert("RGB")) for image in example_batch[image_path_key]
]
return example_batch
def get_transforms(image_processor):
if "height" in image_processor.size:
return Compose(
[
Resize((image_processor.size["height"], image_processor.size["width"])),
ToTensor(),
Normalize(
mean=image_processor.image_mean, std=image_processor.image_std
),
]
)
elif "height" in image_processor.crop_size:
return Compose(
[
Resize(
(
image_processor.crop_size["height"],
image_processor.crop_size["width"],
)
),
ToTensor(),
Normalize(
mean=image_processor.image_mean, std=image_processor.image_std
),
]
)
else:
raise ValueError("Unknown image processor")
def get_ids_and_labels_from_dataset(dataset):
labels = set(dataset[label_key])
label2id, id2label = dict(), dict()
for i, label in enumerate(labels):
label2id[label] = i
id2label[i] = label
return label2id, id2label
def sampled_balanced_train_val(dataset, num_train_per_label=10, num_val_per_label=2):
label_counter = Counter(dataset[label_key])
inst_train = num_train_per_label
inst_val = num_val_per_label
assert min(label_counter.values()) >= inst_train + inst_val
label_counter = Counter()
train_ids = []
val_ids = []
labels = list(enumerate(dataset[label_key]))
random.shuffle(labels)
for i, l in labels:
if label_counter[l] < inst_train:
train_ids.append(i)
elif label_counter[l] < inst_train + inst_val:
val_ids.append(i)
else:
continue
label_counter[l] += 1
return dataset.select(train_ids), dataset.select(val_ids)
DATASET_NAME_TO_URL = {
"cifar100": "cifar100",
"food101": "ethz/food101",
"flowers102": "dpdl-benchmark/oxford_flowers102",
"resisc45": "timm/resisc45",
}
def get_dataset(dataset_name):
if dataset_name == "cifar100":
dataset_url = DATASET_NAME_TO_URL[dataset_name]
dataset = load_dataset(dataset_url, split="train")
dataset = dataset.rename_column("fine_label", label_key)
dataset = dataset.rename_column("img", image_path_key)
dataset_test = load_dataset(dataset_url, split="test")
dataset_test = dataset_test.rename_column("fine_label", label_key)
dataset_test = dataset_test.rename_column("img", image_path_key)
dataset_train, dataset_val = sampled_balanced_train_val(dataset)
return dataset_train, dataset_val, dataset_test
elif dataset_name == "food101":
dataset_url = DATASET_NAME_TO_URL[dataset_name]
dataset = load_dataset(dataset_url, split="train")
dataset_test = load_dataset(dataset_url, split="validation")
dataset_train, dataset_val = sampled_balanced_train_val(dataset)
return dataset_train, dataset_val, dataset_test
elif dataset_name in {"flowers102", "resisc45"}:
dataset_url = DATASET_NAME_TO_URL[dataset_name]
dataset_train = load_dataset(dataset_url, split="train")
dataset_val = load_dataset(dataset_url, split="validation")
dataset_test = load_dataset(dataset_url, split="test")
dataset_train, _ = sampled_balanced_train_val(
dataset_train, num_train_per_label=10, num_val_per_label=0
)
_, dataset_val = sampled_balanced_train_val(
dataset_val, num_train_per_label=0, num_val_per_label=2
)
return dataset_train, dataset_val, dataset_test
else:
raise ValueError("Unknown dataset name")
##########################
# Finetuning Config
##########################
MODEL_NAME_TO_URL = {
"dino-v2-large": "facebook/dinov2-large",
"vit-base": "google/vit-base-patch16-224-in21k",
"vit-large": "google/vit-large-patch16-224-in21k",
}
def get_target_modules(model_name, finetuning_method):
if model_name == "dino-v2-large":
if finetuning_method in {"vera", "svft"}:
return [
"query",
"key",
]
else:
return "all-linear"
elif model_name in {"vit-base", "vit-large"}:
if finetuning_method == "head":
return []
else:
return [
"query",
"value",
]
else:
raise ValueError("Unknown model name")
def get_classifier_modules(model_name):
if model_name in {"dino-v2-large", "vit-base", "vit-large"}:
return [
"classifier",
]
else:
raise ValueError("Unknown model name")
@dataclass
class ScriptArguments:
results_json: str = field(
default="results.json", metadata={"help": "Results json file"}
)
model_name: Literal["dino-v2-large", "vit-base", "vit-large"] = field(
default="vit-base", metadata={"help": "Model name"}
)
dataset_name: Literal[
"cifar100",
"food101",
"flowers102",
"resisc45",
] = field(default="cifar100", metadata={"help": "Dataset name"})
finetuning_method: Literal[
"vera", "boft", "lora", "dora", "svft", "head", "full"
] = field(default="head", metadata={"help": "Finetuning method"})
clf_learning_rate: float = field(
default=1e-3, metadata={"help": "Classifier learning rate"}
)
other_learning_rate: float = field(
default=1e-4, metadata={"help": "Other learning rate"}
)
## BOFT
boft_block_size: int = field(default=0, metadata={"help": "BOFT block size (m)"})
boft_n_butterfly_factor: int = field(
default=0, metadata={"help": "BOFT n butterfly factor (b)"}
)
## VeRA
vera_rank: int = field(default=0, metadata={"help": "Vera rank"})
## LoRA and DoRA
lora_rank: int = field(default=0, metadata={"help": "Lora rank"})
## SVFT rank
svft_rank: int = field(default=0, metadata={"help": "SVFT rank"})
## Target Modules
target_modules: List[str] = field(
default_factory=list,
metadata={"help": "Target modules for finetuning"},
)
def main():
import json
import wandb
from pprint import pprint
wandb.init(mode="disabled")
parser = HfArgumentParser((ScriptArguments, TrainingArguments))
script_args, training_args = parser.parse_args_into_dataclasses()
reset_seed(training_args.seed)
## Load dataset
dataset_train, dataset_val, dataset_test = get_dataset(script_args.dataset_name)
label2id, id2label = get_ids_and_labels_from_dataset(dataset_train)
# Set image transforms
model_name = script_args.model_name
model_url = MODEL_NAME_TO_URL[model_name]
image_processor = AutoImageProcessor.from_pretrained(model_url)
transform_fn = get_transforms(image_processor)
dataset_train.set_transform(lambda x: preprocess(x, transform_fn))
dataset_val.set_transform(lambda x: preprocess(x, transform_fn))
dataset_test.set_transform(lambda x: preprocess(x, transform_fn))
# Load model
model = AutoModelForImageClassification.from_pretrained(
model_url,
label2id=label2id,
id2label=id2label,
ignore_mismatched_sizes=True,
).to(device)
print_trainable_parameters(model)
# Get Target Modules
if not script_args.target_modules:
script_args.target_modules = get_target_modules(
model_name, script_args.finetuning_method
)
# Set fine-tuning config
if script_args.finetuning_method == "vera":
config = VeraConfig(
r=script_args.vera_rank,
target_modules=script_args.target_modules,
modules_to_save=get_classifier_modules(model_name),
vera_dropout=0.1,
bias="none",
)
elif script_args.finetuning_method == "boft":
config = BOFTConfig(
boft_block_size=script_args.boft_block_size,
boft_n_butterfly_factor=script_args.boft_n_butterfly_factor,
target_modules=script_args.target_modules,
modules_to_save=get_classifier_modules(model_name),
boft_dropout=0.1,
bias="boft_only",
)
elif script_args.finetuning_method == "lora":
config = LoraConfig(
r=script_args.lora_rank,
target_modules=script_args.target_modules,
modules_to_save=get_classifier_modules(model_name),
bias="none",
lora_dropout=0.1,
)
elif script_args.finetuning_method == "dora":
config = LoraConfig(
r=script_args.lora_rank,
target_modules=script_args.target_modules,
modules_to_save=get_classifier_modules(model_name),
bias="none",
lora_dropout=0.1,
use_dora=True,
)
elif script_args.finetuning_method == "head":
classifier_modules = get_classifier_modules(model_name)
for n, p in model.named_parameters():
if all(c not in n for c in classifier_modules):
p.requires_grad = False
elif script_args.finetuning_method in ["svft", "full"]:
pass
else:
raise ValueError("Unknown finetuning method")
if script_args.finetuning_method == "svft":
peft_model = model
modules_to_save_list = get_target_modules_list(
peft_model, get_classifier_modules(model_name)
)
freeze_model(peft_model, modules_to_save_list)
target_modules_list = get_target_modules_list(
peft_model, script_args.target_modules
)
create_and_replace_modules(peft_model, target_modules_list, partial(LinearWithSVFT, off_diag=script_args.svft_rank))
elif script_args.finetuning_method in ["head", "full"]:
peft_model = model
else:
peft_model = get_peft_model(model, config)
print_trainable_parameters(peft_model)
params_dict = get_trainable_params_dict(peft_model)
# Setup Trainer
args = TrainingArguments(**training_args.to_dict())
classifier_group = [
p
for n, p in model.named_parameters()
if p.requires_grad
and any(cls_name in n for cls_name in get_classifier_modules(model_name))
]
other_parameters_group = [
p
for n, p in model.named_parameters()
if p.requires_grad
and all(cls_name not in n for cls_name in get_classifier_modules(model_name))
]
optimizer = optim.AdamW(
[
{
"params": classifier_group,
"lr": script_args.clf_learning_rate,
},
{
"params": other_parameters_group,
"lr": script_args.other_learning_rate,
},
],
lr=script_args.other_learning_rate,
weight_decay=training_args.weight_decay,
)
num_train_steps = (
len(dataset_train)
// training_args.per_device_train_batch_size
* training_args.num_train_epochs
)
if training_args.lr_scheduler_type == "cosine":
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=int(num_train_steps * training_args.warmup_ratio),
num_training_steps=num_train_steps,
)
elif training_args.lr_scheduler_type == "linear":
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=int(num_train_steps * training_args.warmup_ratio),
num_training_steps=num_train_steps,
)
trainer = Trainer(
peft_model,
args,
optimizers=(optimizer, scheduler),
train_dataset=dataset_train,
eval_dataset=dataset_val,
tokenizer=image_processor,
compute_metrics=compute_metrics,
data_collator=collate_fn,
)
train_results = trainer.train()
with open(
training_args.output_dir + f"final_train_results_{training_args.seed}.json", "w"
) as f:
json.dump(train_results, f, indent=4)
if script_args.finetuning_method == "svft":
create_and_replace_modules(peft_model, target_modules_list, reset_from_svft)
elif script_args.finetuning_method not in {"svft", "head", "full"}:
peft_model = peft_model.merge_and_unload()
eval_results = trainer.evaluate(dataset_test)
print(eval_results)
for key in script_args.__dataclass_fields__:
value = getattr(script_args, key)
eval_results[key] = value
for key in training_args.__dataclass_fields__:
if "accelerator" in key:
continue
value = getattr(training_args, key)
eval_results[key] = value
eval_results.update(params_dict)
pprint(eval_results, indent=4)
with open(
training_args.output_dir + f"final_eval_results_{training_args.seed}.json", "w"
) as f:
json.dump(eval_results, f, indent=4)
# Save to results.json
try:
with open(script_args.results_json, "r") as f:
results = json.load(f)
except FileNotFoundError:
results = []
results.append(eval_results)
with open(script_args.results_json, "w") as f:
json.dump(results, f, indent=4)
if __name__ == "__main__":
main()
|