File size: 16,475 Bytes
6376749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import random
from typing import Literal, List
from collections import Counter
from dataclasses import dataclass, field
from functools import partial

import torch
import evaluate
import numpy as np
from torch import optim
from datasets import load_dataset
import transformers
from transformers import (
    Trainer,
    TrainingArguments,
    HfArgumentParser,
    AutoImageProcessor,
    AutoModelForImageClassification,
    get_cosine_schedule_with_warmup,
    get_linear_schedule_with_warmup,
)
from torchvision.transforms import (
    Compose,
    Normalize,
    Resize,
    ToTensor,
)
from peft import get_peft_model, VeraConfig, BOFTConfig, LoraConfig

import sys
sys.path.append("../")
from svft.svft_layers import *


##########################
# Metrics
##########################

metric = evaluate.load("accuracy")


def compute_metrics(eval_pred):
    predictions = np.argmax(eval_pred.predictions, axis=1)
    return metric.compute(predictions=predictions, references=eval_pred.label_ids)


##########################
# Utils
##########################

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def reset_seed(SEED=0):
    random.seed(SEED)
    np.random.seed(SEED)
    torch.manual_seed(SEED)
    torch.cuda.manual_seed(SEED)
    torch.cuda.manual_seed_all(SEED)
    transformers.set_seed(SEED)


def get_trainable_params_dict(model):
    total_p = sum(p.numel() for p in model.parameters())
    trainable_p = sum(p.numel() for p in model.parameters() if p.requires_grad)
    clf_trainable_p = sum(
        p.numel()
        for n, p in model.named_parameters()
        if p.requires_grad and "classifier" in n
    )
    other_p = trainable_p - clf_trainable_p
    return {
        "total_p": total_p,
        "trainable_p": trainable_p,
        "clf_trainable_p": clf_trainable_p,
        "other_p": other_p,
    }


def print_trainable_parameters(model):
    params_dict = get_trainable_params_dict(model)
    total_p = params_dict["total_p"]
    trainable_p = params_dict["trainable_p"]
    clf_trainable_p = params_dict["clf_trainable_p"]
    other_p = params_dict["other_p"]
    print(
        f"Total params: {total_p}  | Trainable params: {trainable_p}  |  Trainable%: {trainable_p/total_p*100:.2f}%"
    )
    print(
        f"Clf Trainable params: {clf_trainable_p}  |  Clf Trainable%: {clf_trainable_p/total_p*100:.2f}%"
    )
    print(
        f"FT Trainable params: {other_p}  |  FT Trainable%: {other_p/total_p*100:.2f}%"
    )
    print()


##########################
# Dataset Utilities
##########################

label_key = "label"
image_path_key = "image"


def collate_fn(examples):
    pixel_values = torch.stack(
        [torch.Tensor(example["pixel_values"]) for example in examples]
    )
    labels = torch.tensor([example[label_key] for example in examples])
    return {"pixel_values": pixel_values, "labels": labels}


def preprocess(example_batch, transform_fn):
    example_batch["pixel_values"] = [
        transform_fn(image.convert("RGB")) for image in example_batch[image_path_key]
    ]
    return example_batch


def get_transforms(image_processor):
    if "height" in image_processor.size:
        return Compose(
            [
                Resize((image_processor.size["height"], image_processor.size["width"])),
                ToTensor(),
                Normalize(
                    mean=image_processor.image_mean, std=image_processor.image_std
                ),
            ]
        )
    elif "height" in image_processor.crop_size:
        return Compose(
            [
                Resize(
                    (
                        image_processor.crop_size["height"],
                        image_processor.crop_size["width"],
                    )
                ),
                ToTensor(),
                Normalize(
                    mean=image_processor.image_mean, std=image_processor.image_std
                ),
            ]
        )
    else:
        raise ValueError("Unknown image processor")


def get_ids_and_labels_from_dataset(dataset):
    labels = set(dataset[label_key])
    label2id, id2label = dict(), dict()
    for i, label in enumerate(labels):
        label2id[label] = i
        id2label[i] = label
    return label2id, id2label


def sampled_balanced_train_val(dataset, num_train_per_label=10, num_val_per_label=2):
    label_counter = Counter(dataset[label_key])

    inst_train = num_train_per_label
    inst_val = num_val_per_label

    assert min(label_counter.values()) >= inst_train + inst_val
    label_counter = Counter()
    train_ids = []
    val_ids = []

    labels = list(enumerate(dataset[label_key]))
    random.shuffle(labels)

    for i, l in labels:
        if label_counter[l] < inst_train:
            train_ids.append(i)
        elif label_counter[l] < inst_train + inst_val:
            val_ids.append(i)
        else:
            continue
        label_counter[l] += 1

    return dataset.select(train_ids), dataset.select(val_ids)


DATASET_NAME_TO_URL = {
    "cifar100": "cifar100",
    "food101": "ethz/food101",
    "flowers102": "dpdl-benchmark/oxford_flowers102",
    "resisc45": "timm/resisc45",
}


def get_dataset(dataset_name):
    if dataset_name == "cifar100":
        dataset_url = DATASET_NAME_TO_URL[dataset_name]

        dataset = load_dataset(dataset_url, split="train")
        dataset = dataset.rename_column("fine_label", label_key)
        dataset = dataset.rename_column("img", image_path_key)

        dataset_test = load_dataset(dataset_url, split="test")
        dataset_test = dataset_test.rename_column("fine_label", label_key)
        dataset_test = dataset_test.rename_column("img", image_path_key)
        dataset_train, dataset_val = sampled_balanced_train_val(dataset)

        return dataset_train, dataset_val, dataset_test

    elif dataset_name == "food101":
        dataset_url = DATASET_NAME_TO_URL[dataset_name]
        dataset = load_dataset(dataset_url, split="train")
        dataset_test = load_dataset(dataset_url, split="validation")
        dataset_train, dataset_val = sampled_balanced_train_val(dataset)
        return dataset_train, dataset_val, dataset_test

    elif dataset_name in {"flowers102", "resisc45"}:
        dataset_url = DATASET_NAME_TO_URL[dataset_name]
        dataset_train = load_dataset(dataset_url, split="train")
        dataset_val = load_dataset(dataset_url, split="validation")
        dataset_test = load_dataset(dataset_url, split="test")
        dataset_train, _ = sampled_balanced_train_val(
            dataset_train, num_train_per_label=10, num_val_per_label=0
        )
        _, dataset_val = sampled_balanced_train_val(
            dataset_val, num_train_per_label=0, num_val_per_label=2
        )
        return dataset_train, dataset_val, dataset_test

    else:
        raise ValueError("Unknown dataset name")


##########################
# Finetuning Config
##########################


MODEL_NAME_TO_URL = {
    "dino-v2-large": "facebook/dinov2-large",
    "vit-base": "google/vit-base-patch16-224-in21k",
    "vit-large": "google/vit-large-patch16-224-in21k",
}


def get_target_modules(model_name, finetuning_method):
    if model_name == "dino-v2-large":
        if finetuning_method in {"vera", "svft"}:
            return [
                "query",
                "key",
            ]
        else:
            return "all-linear"
    elif model_name in {"vit-base", "vit-large"}:
        if finetuning_method == "head":
            return []
        else:
            return [
                "query",
                "value",
            ]
    else:
        raise ValueError("Unknown model name")


def get_classifier_modules(model_name):
    if model_name in {"dino-v2-large", "vit-base", "vit-large"}:
        return [
            "classifier",
        ]
    else:
        raise ValueError("Unknown model name")


@dataclass
class ScriptArguments:
    results_json: str = field(
        default="results.json", metadata={"help": "Results json file"}
    )
    model_name: Literal["dino-v2-large", "vit-base", "vit-large"] = field(
        default="vit-base", metadata={"help": "Model name"}
    )
    dataset_name: Literal[
        "cifar100",
        "food101",
        "flowers102",
        "resisc45",
    ] = field(default="cifar100", metadata={"help": "Dataset name"})
    finetuning_method: Literal[
        "vera", "boft", "lora", "dora", "svft", "head", "full"
    ] = field(default="head", metadata={"help": "Finetuning method"})
    clf_learning_rate: float = field(
        default=1e-3, metadata={"help": "Classifier learning rate"}
    )
    other_learning_rate: float = field(
        default=1e-4, metadata={"help": "Other learning rate"}
    )

    ## BOFT
    boft_block_size: int = field(default=0, metadata={"help": "BOFT block size (m)"})
    boft_n_butterfly_factor: int = field(
        default=0, metadata={"help": "BOFT n butterfly factor (b)"}
    )

    ## VeRA
    vera_rank: int = field(default=0, metadata={"help": "Vera rank"})

    ## LoRA and DoRA
    lora_rank: int = field(default=0, metadata={"help": "Lora rank"})

    ## SVFT rank
    svft_rank: int = field(default=0, metadata={"help": "SVFT rank"})

    ## Target Modules
    target_modules: List[str] = field(
        default_factory=list,
        metadata={"help": "Target modules for finetuning"},
    )


def main():
    import json
    import wandb
    from pprint import pprint

    wandb.init(mode="disabled")

    parser = HfArgumentParser((ScriptArguments, TrainingArguments))
    script_args, training_args = parser.parse_args_into_dataclasses()

    reset_seed(training_args.seed)

    ## Load dataset
    dataset_train, dataset_val, dataset_test = get_dataset(script_args.dataset_name)
    label2id, id2label = get_ids_and_labels_from_dataset(dataset_train)

    # Set image transforms
    model_name = script_args.model_name
    model_url = MODEL_NAME_TO_URL[model_name]
    image_processor = AutoImageProcessor.from_pretrained(model_url)
    transform_fn = get_transforms(image_processor)

    dataset_train.set_transform(lambda x: preprocess(x, transform_fn))
    dataset_val.set_transform(lambda x: preprocess(x, transform_fn))
    dataset_test.set_transform(lambda x: preprocess(x, transform_fn))

    # Load model
    model = AutoModelForImageClassification.from_pretrained(
        model_url,
        label2id=label2id,
        id2label=id2label,
        ignore_mismatched_sizes=True,
    ).to(device)
    print_trainable_parameters(model)

    # Get Target Modules
    if not script_args.target_modules:
        script_args.target_modules = get_target_modules(
            model_name, script_args.finetuning_method
        )

    # Set fine-tuning config
    if script_args.finetuning_method == "vera":
        config = VeraConfig(
            r=script_args.vera_rank,
            target_modules=script_args.target_modules,
            modules_to_save=get_classifier_modules(model_name),
            vera_dropout=0.1,
            bias="none",
        )
    elif script_args.finetuning_method == "boft":
        config = BOFTConfig(
            boft_block_size=script_args.boft_block_size,
            boft_n_butterfly_factor=script_args.boft_n_butterfly_factor,
            target_modules=script_args.target_modules,
            modules_to_save=get_classifier_modules(model_name),
            boft_dropout=0.1,
            bias="boft_only",
        )
    elif script_args.finetuning_method == "lora":
        config = LoraConfig(
            r=script_args.lora_rank,
            target_modules=script_args.target_modules,
            modules_to_save=get_classifier_modules(model_name),
            bias="none",
            lora_dropout=0.1,
        )
    elif script_args.finetuning_method == "dora":
        config = LoraConfig(
            r=script_args.lora_rank,
            target_modules=script_args.target_modules,
            modules_to_save=get_classifier_modules(model_name),
            bias="none",
            lora_dropout=0.1,
            use_dora=True,
        )
    elif script_args.finetuning_method == "head":
        classifier_modules = get_classifier_modules(model_name)
        for n, p in model.named_parameters():
            if all(c not in n for c in classifier_modules):
                p.requires_grad = False
    elif script_args.finetuning_method in ["svft", "full"]:
        pass
    else:
        raise ValueError("Unknown finetuning method")

    if script_args.finetuning_method == "svft":
        peft_model = model
        modules_to_save_list = get_target_modules_list(
            peft_model, get_classifier_modules(model_name)
        )
        freeze_model(peft_model, modules_to_save_list)
        target_modules_list = get_target_modules_list(
            peft_model, script_args.target_modules
        )
        create_and_replace_modules(peft_model, target_modules_list, partial(LinearWithSVFT, off_diag=script_args.svft_rank))
    elif script_args.finetuning_method in ["head", "full"]:
        peft_model = model
    else:
        peft_model = get_peft_model(model, config)

    print_trainable_parameters(peft_model)
    params_dict = get_trainable_params_dict(peft_model)

    # Setup Trainer
    args = TrainingArguments(**training_args.to_dict())
    classifier_group = [
        p
        for n, p in model.named_parameters()
        if p.requires_grad
        and any(cls_name in n for cls_name in get_classifier_modules(model_name))
    ]
    other_parameters_group = [
        p
        for n, p in model.named_parameters()
        if p.requires_grad
        and all(cls_name not in n for cls_name in get_classifier_modules(model_name))
    ]
    optimizer = optim.AdamW(
        [
            {
                "params": classifier_group,
                "lr": script_args.clf_learning_rate,
            },
            {
                "params": other_parameters_group,
                "lr": script_args.other_learning_rate,
            },
        ],
        lr=script_args.other_learning_rate,
        weight_decay=training_args.weight_decay,
    )

    num_train_steps = (
        len(dataset_train)
        // training_args.per_device_train_batch_size
        * training_args.num_train_epochs
    )

    if training_args.lr_scheduler_type == "cosine":
        scheduler = get_cosine_schedule_with_warmup(
            optimizer,
            num_warmup_steps=int(num_train_steps * training_args.warmup_ratio),
            num_training_steps=num_train_steps,
        )
    elif training_args.lr_scheduler_type == "linear":
        scheduler = get_linear_schedule_with_warmup(
            optimizer,
            num_warmup_steps=int(num_train_steps * training_args.warmup_ratio),
            num_training_steps=num_train_steps,
        )

    trainer = Trainer(
        peft_model,
        args,
        optimizers=(optimizer, scheduler),
        train_dataset=dataset_train,
        eval_dataset=dataset_val,
        tokenizer=image_processor,
        compute_metrics=compute_metrics,
        data_collator=collate_fn,
    )

    train_results = trainer.train()
    with open(
        training_args.output_dir + f"final_train_results_{training_args.seed}.json", "w"
    ) as f:
        json.dump(train_results, f, indent=4)

    if script_args.finetuning_method == "svft":
        create_and_replace_modules(peft_model, target_modules_list, reset_from_svft)
    elif script_args.finetuning_method not in {"svft", "head", "full"}:
        peft_model = peft_model.merge_and_unload()

    eval_results = trainer.evaluate(dataset_test)
    print(eval_results)

    for key in script_args.__dataclass_fields__:
        value = getattr(script_args, key)
        eval_results[key] = value

    for key in training_args.__dataclass_fields__:
        if "accelerator" in key:
            continue
        value = getattr(training_args, key)
        eval_results[key] = value

    eval_results.update(params_dict)
    pprint(eval_results, indent=4)

    with open(
        training_args.output_dir + f"final_eval_results_{training_args.seed}.json", "w"
    ) as f:
        json.dump(eval_results, f, indent=4)

    # Save to results.json
    try:
        with open(script_args.results_json, "r") as f:
            results = json.load(f)
    except FileNotFoundError:
        results = []

    results.append(eval_results)
    with open(script_args.results_json, "w") as f:
        json.dump(results, f, indent=4)


if __name__ == "__main__":
    main()