Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from collections import OrderedDict | |
from peft import ( | |
LoraConfig, | |
PrefixTuningConfig, | |
PromptEncoderConfig, | |
PromptTuningConfig, | |
) | |
CONFIG_CLASSES = ( | |
LoraConfig, | |
PrefixTuningConfig, | |
PromptEncoderConfig, | |
PromptTuningConfig, | |
) | |
CONFIG_TESTING_KWARGS = ( | |
{ | |
"r": 8, | |
"lora_alpha": 32, | |
"target_modules": None, | |
"lora_dropout": 0.05, | |
"bias": "none", | |
"task_type": "CAUSAL_LM", | |
}, | |
{ | |
"num_virtual_tokens": 10, | |
"task_type": "CAUSAL_LM", | |
}, | |
{ | |
"num_virtual_tokens": 10, | |
"encoder_hidden_size": 32, | |
"task_type": "CAUSAL_LM", | |
}, | |
{ | |
"num_virtual_tokens": 10, | |
"task_type": "CAUSAL_LM", | |
}, | |
) | |
CLASSES_MAPPING = { | |
"lora": (LoraConfig, CONFIG_TESTING_KWARGS[0]), | |
"prefix_tuning": (PrefixTuningConfig, CONFIG_TESTING_KWARGS[1]), | |
"prompt_encoder": (PromptEncoderConfig, CONFIG_TESTING_KWARGS[2]), | |
"prompt_tuning": (PromptTuningConfig, CONFIG_TESTING_KWARGS[3]), | |
} | |
# Adapted from https://github.com/huggingface/transformers/blob/48327c57182fdade7f7797d1eaad2d166de5c55b/src/transformers/activations.py#LL166C7-L166C22 | |
class ClassInstantier(OrderedDict): | |
def __getitem__(self, key, *args, **kwargs): | |
# check if any of the kwargs is inside the config class kwargs | |
if any([kwarg in self[key][1] for kwarg in kwargs]): | |
new_config_kwargs = self[key][1].copy() | |
new_config_kwargs.update(kwargs) | |
return (self[key][0], new_config_kwargs) | |
return super().__getitem__(key, *args, **kwargs) | |
def get_grid_parameters(self, model_list): | |
r""" | |
Returns a list of all possible combinations of the parameters in the config classes. | |
""" | |
grid_parameters = [] | |
for model_tuple in model_list: | |
model_id, lora_kwargs, prefix_tuning_kwargs, prompt_encoder_kwargs, prompt_tuning_kwargs = model_tuple | |
for key, value in self.items(): | |
if key == "lora": | |
# update value[1] if necessary | |
if lora_kwargs is not None: | |
value[1].update(lora_kwargs) | |
elif key == "prefix_tuning": | |
# update value[1] if necessary | |
if prefix_tuning_kwargs is not None: | |
value[1].update(prefix_tuning_kwargs) | |
elif key == "prompt_encoder": | |
# update value[1] if necessary | |
if prompt_encoder_kwargs is not None: | |
value[1].update(prompt_encoder_kwargs) | |
else: | |
# update value[1] if necessary | |
if prompt_tuning_kwargs is not None: | |
value[1].update(prompt_tuning_kwargs) | |
grid_parameters.append((f"test_{model_id}_{key}", model_id, value[0], value[1])) | |
return grid_parameters | |
PeftTestConfigManager = ClassInstantier(CLASSES_MAPPING) | |